Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T17:23:29.270Z Has data issue: false hasContentIssue false

14 - How does drug abuse interact with familial and developmental factors in the etiology of schizophrenia?

Published online by Cambridge University Press:  04 August 2010

Chih-Ken Chen
Affiliation:
Chang Gung Memorial Hospital, Keelung, Taiwan
Robin M. Murray
Affiliation:
Institute of Psychiatry, King's College, London, UK
Matcheri S. Keshavan
Affiliation:
University of Pittsburgh
James L. Kennedy
Affiliation:
Clarke Institute of Psychiatry, Toronto
Robin M. Murray
Affiliation:
Institute of Psychiatry, London
Get access

Summary

The environmental risk factors for schizophrenia can be summarized as operating either early in life or later nearer the onset of frank psychosis. This chapter focuses on the role of drug abuse as one of the later factors, and on how it interacts with familial and developmental factors. All the molecular genetic study results discussed are preliminary; both the positive and the negative findings need replication in larger samples. It is likely that certain drugs change the expressions of genes related to neurotransmitter systems such as dopamine or glutamic acid and also for transcription factors, cell proliferation, apoptosis, cell adhesion, and the synapse. Recent research suggests that dopamine sensitization may underlie both craving and the onset of drug-associated psychosis. A drug abuser with low liability to psychosis may use psychostimulant drugs regularly for longer periods without developing psychosis or, at worst may have just brief psychotic symptoms.
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreasson, S., Alleback, A., Engstrom, A., Rydberg, U. (1987). Cannabis and schizophrenia: a longitudinal study of Swedish conscripts. Lancet : 1483–1485CrossRefGoogle Scholar
Angrist, B. M., Gershon, S. (1970). The phenomenology of experimentally induced amphetamine psychosis: preliminary observations. Biol Psychiatry 2: 95–107Google ScholarPubMed
Arndt, S., Tyrrell, G., Flaum, M., Andreasen, N. C. (1992). Comorbidity of substance abuse and schizophrenia: the role of premorbid adjustment. Psychol Med 22: 379–388CrossRefGoogle Scholar
Arseneault, L., Cannon, M., Poulton, R.et al. (2002). Cannabis use in adolescence and risk for adult psychosis: longitudinal prospective study. Br Med J 325: 1212–1213CrossRefGoogle ScholarPubMed
Bartlett, E., Hallin, A., Chapman, B., Angrist, B. (1997). Selective sensitization to the psychosis-inducing effects of cocaine: a possible marker for addiction relapse vulnerability?Neuropsychopharmacology 16: 77–82CrossRefGoogle ScholarPubMed
Battaglia, M., Cavallini, M. C., Macciardi, F., Bellodi, L. (1997). The structure of DSM-III-R schizotypal personality disorder diagnosed by direct interviews. Schizophr Bull 23: 83–92CrossRefGoogle ScholarPubMed
Bebbington, P., Wilkins, S., Jones, P.et al. (1993). Life events and psychosis. Initial results from the Camberwell Collaborative Psychosis Study. Br J Psychiatry 162: 72–79CrossRefGoogle ScholarPubMed
Bell, D. S. (1965) Comparison of amphetamine psychosis and schizophrenia. Br J Psychiatry III: 701–707CrossRefGoogle Scholar
Bell, D. S. (1973). The experimental reproduction of amphetamine psychosis. Arch Gen Psychiatry 29: 35–40CrossRefGoogle ScholarPubMed
Berger, N., Vaillancourt, C., Boksa, P. (2000). Genetic factors modulate effects of C-section birth on dopaminergic function in the rat. Neuroreport 11: 639–643CrossRefGoogle ScholarPubMed
Blanchard, J. J., Brown, S. A., Horan, W. P., Sherwood, A. R. (2000). Substance use disorders in schizophrenia: review, integration, and a proposed model. Clin Psychol Rev 20: 207–234CrossRefGoogle Scholar
Boyle, M. H., Offord, D. R., Racine, , Y. A., et al. (1992). Predicting substance use in late adolescence: results from the Ontario child health study follow-up. Am J Psychiatry 149: 761–767Google ScholarPubMed
Braff, D. L., Grillon, C., Geyer, M. A. (1992). Gating and habituation of the startle reflex in schizophrenic patients. Arch Gen Psychiatry 49: 206–215CrossRefGoogle ScholarPubMed
Brake, W. G., Boksa, P., Gratton, A. (1997). Effects of perinatal anoxia on the acute locomotor response to repeated amphetamine administration in adult rats. Psychopharmacology 133: 389–395CrossRefGoogle ScholarPubMed
Breakey, W. R., Goodell, H., Lorenz, P. C., McHugh, P. R. (1974). Hallucinogenic drugs as precipitants of schizophrenia. Psychol Med 4: 255–261CrossRefGoogle ScholarPubMed
Breier, A., Su, T. P., Saunders, R.et al. (1997). Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method. Proc Natl Acad Sci USA 94: 2569–2574CrossRefGoogle ScholarPubMed
Camp, D. M., Browman, K. E., Robinson, T. E. (1994). The effects of methamphetamine and cocaine on motor behavior and extracellular dopamine in the ventral striatum of Lewis versus Fischer 344 rats. Brain Res 668: 180–193CrossRefGoogle ScholarPubMed
Cannon, T. D., Kaprio, J., Lonnqvist, J., Huttunen, M., Koskenvuo, M. (1998). The genetic epidemiology of schizophrenia in a Finnish twin cohort. A population-based modeling study. Arch Gen Psychiatry 55: 67–74CrossRefGoogle Scholar
Cantor-Graae, E., McNeil, T. F., Sjostrom, K., Nordstrom, L. G., Rosenlund, T. (1994). Obstetric complications and their relationship to other etiological risk factors in schizophrenia. A case–control study. J Nerv Ment Dis 182: 645–650CrossRefGoogle ScholarPubMed
Cantwell, R., Brewin, J., Glazebrook, C.et al. (1999). Prevalence of substance misuse in first-episode psychosis. Br J Psychiatry 174: 150–153CrossRefGoogle ScholarPubMed
Cardno, A. G., Marshall, E. J., Coid, B.et al. (1999). Heritability estimates for psychotic disorders: the Maudsley twin psychosis series. Arch of Gen Psychiatry 56: 162–168CrossRefGoogle ScholarPubMed
Carlsson, A. (1988). The current status of the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 1: 179–186CrossRefGoogle ScholarPubMed
Cassano, G. B., Pini, S., Saettoni, M., Rucci, P., Dell'Osso, L. (1998). Occurrence and clinical correlates of psychiatric comorbidity in patients with psychotic disorders. J Clin Psychiatry 59: 60–68CrossRefGoogle ScholarPubMed
Chen, C. K., Lin, S. K., Sham, P.et al. (2003). Premorbid characteristics and comorbidity of methamphetamine users with and without psychosis. Psychol Med 33: 1407–1414CrossRefGoogle ScholarPubMed
Chou, P., Liou, M. Y., Lai, M. Y., Hsiao, M. L., Chang, H. J. (1999). Time trend of substance use among adolescent students in Taiwan, 1991–1996. J Formos Med Assoc 98: 827–831Google Scholar
Connell, P. H. (1958). Amphetamine Psychosis London: Chapman, Hall
Crow, T. J., Johnstone, E. C., Deakin, J. F., Longden, A. (1976). Dopamine and schizophrenia. Lancet : 563–566CrossRefGoogle Scholar
Cubells, J. F., Kranzler, H. R., McCance-Katz, E.et al. (2000). A haplotype at the DBH locus, associated with low plasma dopamine beta-hydroxylase activity, also associates with cocaine-induced paranoia. Mol Psychiatry 5: 56–63CrossRefGoogle ScholarPubMed
DeQuardo, J. R., Carpenter, C. F., Tandon, R. (1994). Patterns of substance abuse in schizophrenia: nature and significance. J Psychiatr Res 28: 267–275CrossRefGoogle ScholarPubMed
Dixon, L., Haas, G., Weiden, P. J., Sweeney, J., Frances, A. J. (1991). Drug abuse in schizophrenic patients: clinical correlates and reasons for use. Am J Psychiatry 148: 224–230Google ScholarPubMed
Duaux, E., Gorwood, P., Griffon, N.et al. (1998). Homozygosity at the dopamine D3 receptor gene is associated with opiate dependence. Mol Psychiatry 3: 333–336CrossRefGoogle ScholarPubMed
Dumas, P., Saoud, M., Bouafia, S.et al. (2002). Cannabis use correlates with schizotypal personality traits in healthy students. Psychiatry Res 109: 27–35CrossRefGoogle ScholarPubMed
Ebstein, R. P., Novick, O., Umansky, R.et al. (1996). Dopamine D4 receptor (D4DR) exon III polymorphism associated with the human personality trait of novelty seeking. Nat Genet 12: 78–80CrossRefGoogle ScholarPubMed
Ewing, J. A., Mueller, R. A., Rouse, B. A., Silver, D. (1977). Low levels of dopamine beta-hydroxylase and psychosis. Am J Psychiatry 134: 927–928Google ScholarPubMed
Fischman, M. W., Schuster, C. R. (1982). Cocaine self-administration in humans. Fed Proc 41: 241–246Google ScholarPubMed
Flaum, M., Schultz, S. K. (1996). When does amphetamine-induced psychosis become schizophrenia? [Clinical conference]Am J Psychiatry 153: 812–815Google Scholar
Franke, P., Nothen, M. M., Wang, T.et al. (2000). DRD4 exon III VNTR polymorphism-susceptibility factor for heroin dependence? Results of a case–control and a family-based association approach. Mol Psychiatry 5: 101–104CrossRefGoogle Scholar
Freud, S. (1885). On the general effects of cocaine. [Lecture before Psychiatric Union, 5 March, 1885. Translated to English.] Drug Depend 5: 15–17Google Scholar
Geddes, J. R., Lawrie, S. M. (1995). Obstetric complications and schizophrenia: a meta-analysis. Br J Psychiatry 167: 786–793CrossRefGoogle ScholarPubMed
Gold, M. S., Bowers, M. B. Jr. (1978). Neurobiological vulnerability to low-dose amphetamine psychosis. Am J Psychiatry 135: 1546–1548Google ScholarPubMed
Gorriti, M. A., Rodriguez, F., Navarro, M., Palomo, T. (1999). Chronic (-)-delta9-tetrahydrocannabinol treatment induces sensitization to the psychomotor effects of amphetamine in rats. Eur J Pharmacol 365: 133–142CrossRefGoogle ScholarPubMed
Griffith, J. D., Cavanaugh, J., Oates, J. A. (1969). Schizophreniform psychosis induced by large-dose administration of d-amphetamine. J Psychedel Drugs 2: 42–48Google Scholar
Griffith, J. D., Cavanaugh, J., Held, J., Oates, J. A. (1972). Dextroamphetamine. Evaluation of psychomimetic properties in man. Arch Gen Psychiatry 26: 97–100CrossRefGoogle ScholarPubMed
Guillin, O., Diaz, J., Carroll, P.et al. (2001). BDNF controls dopamine D3 receptor expression and triggers behavioral sensitization. Nature 411: 86–89CrossRefGoogle Scholar
Harrison, P. J., Owen, M. J. (2003). Genes for schizophrenia? Recent findings and their pathophysiological implications. Lancet 361: 417–419CrossRefGoogle ScholarPubMed
Imade, A. G. T., Ebie, J. C. (1991). A retrospective study of symptom patterns of cannabis-induced psychosis. Acta Psychiatr Scand 83: 134–136CrossRefGoogle ScholarPubMed
Ito, C. (2002). Analysis of overall gene expression induced by amphetamine and phencyclidine: novel targets for the treatment of drug psychosis and schizophrenia. Curr Pharm Des 8: 147–153CrossRefGoogle Scholar
Iwanami, A., Suga, I., Kaneko, T., Sugiyama, A., Nakatani, Y. (1994). P300 component of event-related potentials in methamphetamine psychosis and schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 18: 465–475Google Scholar
Jacobs, M. R., Fehr, K. O., Cox, T. C., et al. (1987). Drugs and Drug Abuse. A Reference Text. Toronto: Addiction Research Foundation
Javitt, D. C., Zukin, S. Z. (1991). Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 148: 1301–1308Google ScholarPubMed
Johnson, B. A., Smith, B. L., Taylor, P. (1988). Cannabis and schizophrenia. Lancet : 593Google Scholar
Jones, P., Rodgers, B., Murray, R., Marmot, M. (1994). Child developmental risk factors for adult schizophrenia in the British 1946 birth cohort. Lancet 344: 1398–1402CrossRefGoogle ScholarPubMed
Jori, A., Garattini, S. (1973). Catecholamine metabolism and amphetamine effects on sensitive and insensitive mice. In Frontiers in Catecholamine Research, ed. E. Usdin, S. H. Snyder. New York: Pergamon Press, pp. 939–941CrossRef
Kendler, K. S., Diehl, S. R. (1993). The genetics of schizophrenia: a current, genetic-epidemiologic perspective. Schizophr Bull 19: 261–285CrossRefGoogle ScholarPubMed
Khantzian, E. J. (1985). The self-medication hypothesis of addictive disorders: focus on heroin and cocaine dependence. Am J Psychiatry 142: 1259–1264Google ScholarPubMed
Kikuchi, K., Inada, T., Iijima, Y., et al. (2001). Association between dopamine D11 receptor family (DRD1, DRD5) gene polymorphisms and methamphetamine psychosis. In Proceedings of the International College of Neuro-Psychopharmacology Regional Meeting, Hiroshima, p. 398
Kleinman, J. E., Casanova, F. M., Jaskiv, G. E. (1988). The neuropathology of schizophrenia. Schizophrenia Bulletin 14: 209–216CrossRefGoogle ScholarPubMed
Konuma, K. (1994). Use and abuse of amphetamines in Japan. In Amphetamine and its Analogs pp. 415–435Google Scholar
Kotler, M., Cohen, H., Segman, R.et al. (1997). Excess dopamine D4 receptor (D4DR) exon III seven repeat allele in opioid-dependent subjects. Mol Psychiatry 2: 251–254CrossRefGoogle ScholarPubMed
Krebs, M. O., Sautel, F., Bourdel, M. C.et al. (1998). Dopamine D3 receptor gene variants and substance abuse in schizophrenia. Mol Psychiatry 3: 337–341CrossRefGoogle Scholar
Kwapil, T. R. (1996). A longitudinal study of drug and alcohol use by psychosis-prone and impulsive-nonconforming individuals. J Abnorm Psychol 105: 114–123CrossRefGoogle ScholarPubMed
Laruelle, M. (2000). The role of endogenous sensitization in the pathophysiology of schizophrenia: implications from recent brain imaging studies. Brain Res Brain Res Rev 31: 371–384CrossRefGoogle ScholarPubMed
Lewis, S. W., Murray, R. M. (1987). Obstetric complications, neurodevelopmental deviance, and risk of schizophrenia. J Psychiatr Res 21: 413–421CrossRefGoogle ScholarPubMed
Li, T., Zhu, Z. H., Liu, X.et al. (2000). Association analysis of polymorphisms in the DRD4 gene and heroin abuse in Chinese subjects. Am J Med Genet 96: 616–6213.0.CO;2-7>CrossRefGoogle ScholarPubMed
Lieberman, J. A., Kane, J. M., Alvir, J. (1987). Provocative tests with psychostimulant drugs in schizophrenia. Psychopharmacology 91: 415–433CrossRefGoogle Scholar
Lieberman, J. A., Sheitman, B. B., Kinon, B. J. (1997). Neurochemical sensitization in the pathophysiology of schizophrenia: deficits and dysfunction in neuronal regulation and plasticity. Neuropsychopharmacology 17: 205–229CrossRefGoogle ScholarPubMed
Linszen, D. H., Dingemans, P. M., Lenior, M. E. (1994). Cannabis abuse and the course of recent-onset schizophrenic disorders. Arch of Gen Psychiatry 51: 273–279CrossRefGoogle ScholarPubMed
Lipska, B. K., Jaskiw, G. E., Chrapusta, S., Karoum, F., Weinberger, D. R. (1992). Ibotenic acid lesion of the ventral hippocampus differentially affects dopamine and its metabolites in the nucleus accumbens and prefrontal cortex in the rat. Brain Res 585: 1–6CrossRefGoogle ScholarPubMed
Lipska, B. K., Halim, N. D., Segal, P. N., Weinberger, D. R. (2002). Effects of reversible inactivation of the neonatal ventral hippocampus on behavior in the adult rat. J Neurosci 22: 2835–2842CrossRefGoogle ScholarPubMed
Longhurst, J. G. (1997). Cannabis and schizophrenia. Br J Psychiatry 171: 584–585CrossRefGoogle Scholar
Lopez, W., Jeste, D. V. (1997). Movement disorders and substance abuse. Psychiatr Serv 48: 634–636Google ScholarPubMed
Mathers, D. C., Ghodse, A. H., Caan, A. W., Scott, S. A. (1991). Cannabis use in a large sample of acute psychiatric admissions. Br J Addict 86: 779–784CrossRefGoogle Scholar
McCann, U. D., Wong, D. F., Yokoi, F.et al. (1998). Reduced striatal dopamine transporter density in abstinent methamphetamine and methcathinone users: evidence from positron emission tomography studies with [11C]WIN-35,428. J Neurosci 18: 8417–8422CrossRefGoogle ScholarPubMed
McCreadie, R. G. (2002). Use of drugs, alcohol and tobacco by people with schizophrenia: case–control study. Br J Psychiatry 181: 321–325CrossRefGoogle ScholarPubMed
McGuire, P. K., Jones, P., Harvey, I.et al. (1995). Morbid risk of schizophrenia for relatives of patients with cannabis-associated psychosis. Schizophr Res 15: 277–281CrossRefGoogle ScholarPubMed
Meltzer, H. Y., Cho, H. W., Carroll, B. J., Russo, P. (1976). Serum dopamine-beta-hydroxylase activity in the affective psychoses and schizophrenia. Decreased activity in unipolar psychotically depressed patients. Arch of Gen Psychiatry 33: 585–591CrossRefGoogle ScholarPubMed
Menezes, P. R., Johnson, S., Thornicroft, G.et al. (1996). Drug and alcohol problems among individuals with severe mental illness in south London. Br J Psychiatry 168: 612–619CrossRefGoogle ScholarPubMed
Meyers, B. S., Alexopoulos, G. S., Kakuma, T.et al. (1999). Decreased dopamine beta-hydroxylase activity in unipolar geriatric delusional depression. Biol Psychiatry, 45: 448–452CrossRefGoogle ScholarPubMed
Modestin, J., Nussbaumer, C., Angst, K., Scheidegger, P., Hell, D. (1997). Use of potentially abusive psychotropic substances in psychiatric inpatients. Eur Arch Psychiatry Clin Neurosci 247: 146–153CrossRefGoogle ScholarPubMed
Mueser, K. T., Yarnold, P. R., Levinson, D. F.et al. (1990). Prevalence of substance abuse in schizophrenia, demographic and clinical correlates. Schizophr Bull 6: 10–41Google Scholar
Mueser, K. T., Drake, R. E., Wallach, M. A. (1998). Dual diagnosis: a review of etiological theories. Addict Behav 23: 717–734CrossRefGoogle ScholarPubMed
Murray, R. M., Fearon, P. (1999). The developmental “risk factor” model of schizophrenia. J Psychiatr Res 33: 497–499CrossRefGoogle Scholar
Murray, R. M., Grech, A., Phillips, P., Johnson, S. (2003). What is the relationship between substance abuse and schizophrenia? In The Epidemiology of Schizophrenia, ed. R. M. Murray, P. Jones, E. Susser, J. van Os, M. Cannon. Cambridge, UK: Cambridge University Press, pp. 317–342
Nakatani, Y., Yoshizawa, F., Yamada, H.et al. (1989). Methamphetamine psychosis in Japan: a survey. Br J Addict 84: 1548–1549CrossRefGoogle ScholarPubMed
National Institute on Drug Abuse (1998). Methamphetamine abuse and addiction. (Publication 98–4210). Bethesda, MD: National Institutes of Health
Negrete, J. C. (1989). Cannabis and schizophrenia. Br J Addiction 84: 349–351CrossRefGoogle Scholar
O'Callaghan, E., Gibson, T., Colohan, H. A.et al. (1992). Risk of schizophrenia in adults born after obstetric complications and their association with early onset of illness: a controlled study. Br Med J 305: 1256–1259CrossRefGoogle ScholarPubMed
Peralta, V., Cuesta, M. J. (1992). Influence of cannabis abuse on schizophrenic psychopathology. Acta Psychiatr Scand 85: 127–130CrossRefGoogle ScholarPubMed
Persico, A. M., Bird, G., Gabbay, F. H., Uhl, G. R. (1996) D2 dopamine receptor gene TaqI A1 and B1 restriction fragment length polymorphisms: enhanced frequencies in psychostimulant-preferring polysubstance abusers. Biol Psychiatry 40: 776–784CrossRefGoogle ScholarPubMed
Pilla, M., Perachon, S., Sautel, F.et al. (1999). Selective inhibition of cocaine-seeking behavior by a partial dopamine D3 receptor agonist. Nature 400: 371–375CrossRefGoogle ScholarPubMed
Post, R. M. (1975). Cocaine psychosis: a continuum model. Am J Psychiatry 132: 225–231Google ScholarPubMed
Ralph, R. J., Varty, G. B., Kelly, M. A.et al. (1999). The dopamine D2, but not D3 or D4, receptor subtype is essential for the disruption of prepulse inhibition produced by amphetamine in mice. J Neurosci 19: 4627–4633CrossRefGoogle ScholarPubMed
Regier, D. A., Farmer, M. E., Rae, D. S.et al. (1990). Comorbidity of mental disorders with alcohol and other drug abuse. Results from the Epidemiologic Catchment Area (ECA) Study. J Am Med Assoc 264: 2511–2518CrossRefGoogle ScholarPubMed
Rolfe, M., Tang, C. M., Sabally, S.et al. (1993). Psychosis and cannabis abuse in The Gambia. A case–control study. Br J Psychiatry 163: 798–801CrossRefGoogle ScholarPubMed
Sato, M., Chen, C. C., Akiyama, K., Otsuki, S. (1983). Acute exacerbation of paranoid psychotic state after long-term abstinence in patients with previous methamphetamine psychosis. Biol Psychiatry 18: 429–440Google ScholarPubMed
Schneier, F. R., Siris, S. G. (1987). A review of psychoactive substance use and abuse in schizophrenia. Patterns of drug choice. J Nerv Ment Dis 175: 641–652CrossRefGoogle ScholarPubMed
Sekine, Y., Iyo, M., Ouchi, Y.et al. (2001). Methamphetamine-related psychiatric symptoms and reduced brain dopamine transporters studied with PET. Am J Psychiatry 158: 1206–1214CrossRefGoogle ScholarPubMed
Selzer, J. A., Lieberman, J. A. (1993). Schizophrenia and substance abuse. Psychiatr Clin North Am 16: 401–412Google ScholarPubMed
Slaby, A. E. (1991). Dual diagnosis: fact or fiction? In Dual Diagnosis in Substance Abuse, ed. M. S. Gold, A. E. Slaby. New York: Marcel Dekker, pp. 3–28
Snell, L. D., Yi, S.-J., Johnson, K. M. (1988). Comparison of the effects of MK-801 and phencyclidine on catecholamine uptake and NMDA-induced norepinephrine release. Eur J Pharmacol 145: 223–226CrossRefGoogle ScholarPubMed
Snyder, S. H. (1973). Amphetamine psychosis: a “model” schizophrenia mediated by catecholamines. Am J Psychiatry 130: 61–67CrossRefGoogle ScholarPubMed
Soyka, M., Albus, M., Kathmann, N.et al. (1993). Prevalence of alcohol and drug abuse in schizophrenic inpatients. Eur Arch Psychiatry Clin Neurosci 242: 362–372CrossRefGoogle ScholarPubMed
Staley, J. K., Mash, D. C. (1996). Adaptive increase in D3 dopamine receptors in the brain reward circuits of human cocaine fatalities. J Neurosci 16: 6100–6106CrossRefGoogle ScholarPubMed
Stefanis, N., Frangou, S., Yakeley, J.et al. (1999). Hippocampal volume reduction in schizophrenia: effects of genetic risk and pregnancy and birth complications. Biol Psychiatry 46: 697–702CrossRefGoogle ScholarPubMed
Strassman, R. J. (1984). Adverse reactions to psychedelic drugs. A review of the literature. J Nerv Ment Dis 172: 577–595CrossRefGoogle ScholarPubMed
Suwaki, H., Fukui, S., Konuma, K. (1997) Methamphetamine abuse in Japan: its 45 year history and the current situation. In Amphetamine Misuse: International Perspective on Current Trends, ed. H. Klee. Amsterdam: Harwood Academic, pp. 199–214CrossRef
Takahashi, M., Shirakawa, O., Toyooka, K.et al. (2000). Abnormal expression of brain-derived neurotrophic factor and its receptor in the corticolimbic system of schizophrenic patients. Mol Psychiatry 5: 293–300CrossRefGoogle ScholarPubMed
Tarter, R. E., Laird, S. B., Kabene, M., Bukstein, O., Kaminer, Y. (1990). Drug abuse severity in adolescents is associated with magnitude of deviation in temperament traits. Br J Addiction 85: 1501–1504CrossRefGoogle ScholarPubMed
Tatetsu, S. (1963). Methamphetamine. Folia Psychiatr Neurol JapSuppl 7: 377–380Google Scholar
Tatetsu, S., Goto, A., Fujiwara, T. (1956). The Methamphetamine Psychosis. Tokyo: Igakushoin
Thomas, H. (1993). Psychiatric symptoms in cannabis users. Br J Psychiatry 163: 141–149CrossRefGoogle ScholarPubMed
Thornicroft, G. (1990). Cannabis and psychosis: is there epidemiological evidence for an association?Br J Psychiatry 157: 25–33CrossRefGoogle ScholarPubMed
Tsuang, M. T., Simpson, J. C., Kronfol, Z. (1982). Subtypes of drug abuse with psychosis. Demographic characteristics, clinical features, and family history. Arch Gen Psychiatry 39: 141–147CrossRefGoogle ScholarPubMed
Tsuang, M. T., Stone, W. S., Faraone, S. V. (2001). Genes, environment and schizophrenia. Br J Psychiatry 178: 18–24CrossRefGoogle Scholar
Ujike, H., Harano, M., Inada, T.et al. (2003). Nine- or fewer repeat alleles in VNTR polymorphism of the dopamine transporter gene is a strong risk factor for prolonged methamphetamine psychosis. Pharmacogenom J 3: 242–247CrossRefGoogle ScholarPubMed
United Nations International Drug Control Programme (1997). World Drug Report. New York: Oxford University Press
Vaillancourt, C., Boksa, P. (1998). Caesarean section birth with general anesthesia increases dopamine-mediated behavior in the adult rat. Neuroreport 9: 2953–2959CrossRefGoogle ScholarPubMed
Vaillancourt, C., Boksa, P. (2000). Birth insult alters dopamine-mediated behavior in a precocial species, the guinea pig. Implications for schizophrenia. Neuropsychopharmacology 23: 654–666CrossRefGoogle Scholar
Os, J., Jones, P., Sham, P., Bebbington, P., Murray, R. M. (1998). Risk factors for onset and persistence of psychosis. Soc Psychiatry Psychiatr Epidemiol 33: 596–605Google Scholar
Os, J., Bak, M., Hanssen, M.et al. (2002). Cannabis use and psychosis: a longitudinal population-based study. Am J Epidemiol 156: 319–327Google ScholarPubMed
Vardy, M. M., Kay, S. R. (1983). LSD psychosis or LSD-induced schizophrenia? A multimethod inquiry. Arch Gen Psychiatry 40: 877–883CrossRefGoogle ScholarPubMed
Verdoux, H., Mury, M., Besancon, G., Bourgeois, M. (1996a). [Comparative study of substance dependence comorbidity in bipolar, schizophrenic and schizoaffective disorders.]Encephale 22: 95–101Google Scholar
Verdoux, H., Os, J., Sham, P.et al. (1996b). Does familiality predispose to both emergence and persistence of psychosis? A follow-up study. Br J Psychiatry 168: 620–626. [Published erratum appears in Br J Psychiatry (1996). 169: 116]CrossRefGoogle Scholar
Verdoux, H., Gindre, C., Sorbara, F., Tournier, M., Swendsen, J. D. (2002). Cannabis use and the expression of psychosis vulnerability in daily life. Schizophr Res 53 (Suppl.): 225Google Scholar
Volkow, N. D., Chang, L., Wang, G. J.et al. (2001). Association of dopamine transporter reduction with psychomotor impairment in methamphetamine abusers. Am J Psychiatry 158: 377–382CrossRefGoogle ScholarPubMed
Williams, J. H., Wellman, N. A., Rawlins, J. N. (1996). Cannabis use correlates with schizotypy in healthy people. Addiction 91: 869–877CrossRefGoogle ScholarPubMed
Wolf, M. E., White, F. J., Nassar, R., Brooderson, R. J., Khansa, M. R. (1993). Differential development of autoreceptor subsensitivity and enhanced dopamine release during amphetamine sensitization. J Pharmacol Exp Ther 264: 249–255Google ScholarPubMed
Zammit, S., Allebeck, P., Andreasson, S., Lundberg, I., Lewis, G. (2002). Self reported cannabis use as a risk factor for schizophrenia in Swedish conscripts of 1969: historical cohort study. Br Med J 325: 1199.CrossRefGoogle ScholarPubMed
Negrete, J. C. (1989). Cannabis and schizophrenia. Br J Addiction 84: 349–351CrossRefGoogle Scholar
O'Callaghan, E., Gibson, T., Colohan, H. A.et al. (1992). Risk of schizophrenia in adults born after obstetric complications and their association with early onset of illness: a controlled study. Br Med J 305: 1256–1259CrossRefGoogle ScholarPubMed
Peralta, V., Cuesta, M. J. (1992). Influence of cannabis abuse on schizophrenic psychopathology. Acta Psychiatr Scand 85: 127–130CrossRefGoogle ScholarPubMed
Persico, A. M., Bird, G., Gabbay, F. H., Uhl, G. R. (1996) D2 dopamine receptor gene TaqI A1 and B1 restriction fragment length polymorphisms: enhanced frequencies in psychostimulant-preferring polysubstance abusers. Biol Psychiatry 40: 776–784CrossRefGoogle ScholarPubMed
Pilla, M., Perachon, S., Sautel, F.et al. (1999). Selective inhibition of cocaine-seeking behavior by a partial dopamine D3 receptor agonist. Nature 400: 371–375CrossRefGoogle ScholarPubMed
Post, R. M. (1975). Cocaine psychosis: a continuum model. Am J Psychiatry 132: 225–231Google ScholarPubMed
Ralph, R. J., Varty, G. B., Kelly, M. A.et al. (1999). The dopamine D2, but not D3 or D4, receptor subtype is essential for the disruption of prepulse inhibition produced by amphetamine in mice. J Neurosci 19: 4627–4633CrossRefGoogle ScholarPubMed
Regier, D. A., Farmer, M. E., Rae, D. S.et al. (1990). Comorbidity of mental disorders with alcohol and other drug abuse. Results from the Epidemiologic Catchment Area (ECA) Study. J Am Med Assoc 264: 2511–2518CrossRefGoogle ScholarPubMed
Rolfe, M., Tang, C. M., Sabally, S.et al. (1993). Psychosis and cannabis abuse in The Gambia. A case–control study. Br J Psychiatry 163: 798–801CrossRefGoogle ScholarPubMed
Sato, M., Chen, C. C., Akiyama, K., Otsuki, S. (1983). Acute exacerbation of paranoid psychotic state after long-term abstinence in patients with previous methamphetamine psychosis. Biol Psychiatry 18: 429–440Google ScholarPubMed
Schneier, F. R., Siris, S. G. (1987). A review of psychoactive substance use and abuse in schizophrenia. Patterns of drug choice. J Nerv Ment Dis 175: 641–652CrossRefGoogle ScholarPubMed
Sekine, Y., Iyo, M., Ouchi, Y.et al. (2001). Methamphetamine-related psychiatric symptoms and reduced brain dopamine transporters studied with PET. Am J Psychiatry 158: 1206–1214CrossRefGoogle ScholarPubMed
Selzer, J. A., Lieberman, J. A. (1993). Schizophrenia and substance abuse. Psychiatr Clin North Am 16: 401–412Google ScholarPubMed
Slaby, A. E. (1991). Dual diagnosis: fact or fiction? In Dual Diagnosis in Substance Abuse, ed. M. S. Gold, A. E. Slaby. New York: Marcel Dekker, pp. 3–28
Snell, L. D., Yi, S.-J., Johnson, K. M. (1988). Comparison of the effects of MK-801 and phencyclidine on catecholamine uptake and NMDA-induced norepinephrine release. Eur J Pharmacol 145: 223–226CrossRefGoogle ScholarPubMed
Snyder, S. H. (1973). Amphetamine psychosis: a “model” schizophrenia mediated by catecholamines. Am J Psychiatry 130: 61–67CrossRefGoogle ScholarPubMed
Soyka, M., Albus, M., Kathmann, N.et al. (1993). Prevalence of alcohol and drug abuse in schizophrenic inpatients. Eur Arch Psychiatry Clin Neurosci 242: 362–372CrossRefGoogle ScholarPubMed
Staley, J. K., Mash, D. C. (1996). Adaptive increase in D3 dopamine receptors in the brain reward circuits of human cocaine fatalities. J Neurosci 16: 6100–6106CrossRefGoogle ScholarPubMed
Stefanis, N., Frangou, S., Yakeley, J.et al. (1999). Hippocampal volume reduction in schizophrenia: effects of genetic risk and pregnancy and birth complications. Biol Psychiatry 46: 697–702CrossRefGoogle ScholarPubMed
Strassman, R. J. (1984). Adverse reactions to psychedelic drugs. A review of the literature. J Nerv Ment Dis 172: 577–595CrossRefGoogle ScholarPubMed
Suwaki, H., Fukui, S., Konuma, K. (1997) Methamphetamine abuse in Japan: its 45 year history and the current situation. In Amphetamine Misuse: International Perspective on Current Trends, ed. H. Klee. Amsterdam: Harwood Academic, pp. 199–214CrossRef
Takahashi, M., Shirakawa, O., Toyooka, K.et al. (2000). Abnormal expression of brain-derived neurotrophic factor and its receptor in the corticolimbic system of schizophrenic patients. Mol Psychiatry 5: 293–300CrossRefGoogle ScholarPubMed
Tarter, R. E., Laird, S. B., Kabene, M., Bukstein, O., Kaminer, Y. (1990). Drug abuse severity in adolescents is associated with magnitude of deviation in temperament traits. Br J Addiction 85: 1501–1504CrossRefGoogle ScholarPubMed
Tatetsu, S. (1963). Methamphetamine. Folia Psychiatr Neurol JapSuppl 7: 377–380Google Scholar
Tatetsu, S., Goto, A., Fujiwara, T. (1956). The Methamphetamine Psychosis. Tokyo: Igakushoin
Thomas, H. (1993). Psychiatric symptoms in cannabis users. Br J Psychiatry 163: 141–149CrossRefGoogle ScholarPubMed
Thornicroft, G. (1990). Cannabis and psychosis: is there epidemiological evidence for an association?Br J Psychiatry 157: 25–33CrossRefGoogle ScholarPubMed
Tsuang, M. T., Simpson, J. C., Kronfol, Z. (1982). Subtypes of drug abuse with psychosis. Demographic characteristics, clinical features, and family history. Arch Gen Psychiatry 39: 141–147CrossRefGoogle ScholarPubMed
Tsuang, M. T., Stone, W. S., Faraone, S. V. (2001). Genes, environment and schizophrenia. Br J Psychiatry 178: 18–24CrossRefGoogle Scholar
Ujike, H., Harano, M., Inada, T.et al. (2003). Nine- or fewer repeat alleles in VNTR polymorphism of the dopamine transporter gene is a strong risk factor for prolonged methamphetamine psychosis. Pharmacogenom J 3: 242–247CrossRefGoogle ScholarPubMed
United Nations International Drug Control Programme (1997). World Drug Report. New York: Oxford University Press
Vaillancourt, C., Boksa, P. (1998). Caesarean section birth with general anesthesia increases dopamine-mediated behavior in the adult rat. Neuroreport 9: 2953–2959CrossRefGoogle ScholarPubMed
Vaillancourt, C., Boksa, P. (2000). Birth insult alters dopamine-mediated behavior in a precocial species, the guinea pig. Implications for schizophrenia. Neuropsychopharmacology 23: 654–666CrossRefGoogle Scholar
Os, J., Jones, P., Sham, P., Bebbington, P., Murray, R. M. (1998). Risk factors for onset and persistence of psychosis. Soc Psychiatry Psychiatr Epidemiol 33: 596–605Google Scholar
Os, J., Bak, M., Hanssen, M.et al. (2002). Cannabis use and psychosis: a longitudinal population-based study. Am J Epidemiol 156: 319–327Google ScholarPubMed
Vardy, M. M., Kay, S. R. (1983). LSD psychosis or LSD-induced schizophrenia? A multimethod inquiry. Arch Gen Psychiatry 40: 877–883CrossRefGoogle ScholarPubMed
Verdoux, H., Mury, M., Besancon, G., Bourgeois, M. (1996a). [Comparative study of substance dependence comorbidity in bipolar, schizophrenic and schizoaffective disorders.]Encephale 22: 95–101Google Scholar
Verdoux, H., Os, J., Sham, P.et al. (1996b). Does familiality predispose to both emergence and persistence of psychosis? A follow-up study. Br J Psychiatry 168: 620–626. [Published erratum appears in Br J Psychiatry (1996). 169: 116]CrossRefGoogle Scholar
Verdoux, H., Gindre, C., Sorbara, F., Tournier, M., Swendsen, J. D. (2002). Cannabis use and the expression of psychosis vulnerability in daily life. Schizophr Res 53 (Suppl.): 225Google Scholar
Volkow, N. D., Chang, L., Wang, G. J.et al. (2001). Association of dopamine transporter reduction with psychomotor impairment in methamphetamine abusers. Am J Psychiatry 158: 377–382CrossRefGoogle ScholarPubMed
Williams, J. H., Wellman, N. A., Rawlins, J. N. (1996). Cannabis use correlates with schizotypy in healthy people. Addiction 91: 869–877CrossRefGoogle ScholarPubMed
Wolf, M. E., White, F. J., Nassar, R., Brooderson, R. J., Khansa, M. R. (1993). Differential development of autoreceptor subsensitivity and enhanced dopamine release during amphetamine sensitization. J Pharmacol Exp Ther 264: 249–255Google ScholarPubMed
Zammit, S., Allebeck, P., Andreasson, S., Lundberg, I., Lewis, G. (2002). Self reported cannabis use as a risk factor for schizophrenia in Swedish conscripts of 1969: historical cohort study. Br Med J 325: 1199.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×