Chemistry & Biology
Volume 9, Issue 9, September 2002, Pages 971-980
Journal home page for Chemistry & Biology

Article
Using Steric Hindrance to Design New Inhibitors of Class C β-Lactamases

https://doi.org/10.1016/S1074-5521(02)00211-9Get rights and content
Under an Elsevier user license
open archive

Abstract

β-lactamases confer resistance to β-lactam antibiotics such as penicillins and cephalosporins. However, β-lactams that form an acyl-intermediate with the enzyme but subsequently are hindered from forming a catalytically competent conformation seem to be inhibitors of β-lactamases. This inhibition may be imparted by specific groups on the ubiquitous R1 side chain of β-lactams, such as the 2-amino-4-thiazolyl methoxyimino (ATMO) group common among third-generation cephalosporins. Using steric hindrance of deacylation as a design guide, penicillin and carbacephem substrates were converted into effective β-lactamase inhibitors and antiresistance antibiotics. To investigate the structural bases of inhibition, the crystal structures of the acyl-adducts of the penicillin substrate amoxicillin and the new analogous inhibitor ATMO-penicillin were determined. ATMO-penicillin binds in a catalytically incompetent conformation resembling that adopted by third-generation cephalosporins, demonstrating the transferability of such sterically hindered groups in inhibitor design.

Cited by (0)