Elsevier

Vision Research

Volume 47, Issue 3, February 2007, Pages 363-374
Vision Research

Visual cycle and its metabolic support in gecko photoreceptors

https://doi.org/10.1016/j.visres.2006.08.024Get rights and content
Under an Elsevier user license
open archive

Abstract

Photoreceptors of nocturnal geckos are transmuted cones that acquired rod morphological and physiological properties but retained cone-type phototransduction proteins. We have used microspectrophotometry and microfluorometry of solitary isolated green-sensitive photoreceptors of Tokay gecko to study the initial stages of the visual cycle within these cells. These stages are the photolysis of the visual pigment, the reduction of all-trans retinal to all-trans retinol, and the clearance of all-trans retinol from the outer segment (OS) into the interphotoreceptor space. We show that the rates of decay of metaproducts (all-trans retinal release) and retinal-to-retinol reduction are intermediate between those of typical rods and cones. Clearance of retinol from the OS proceeds at a rate that is typical of rods and is greatly accelerated by exposure to interphotoreceptor retinoid-binding protein, IRBP. The rate of retinal release from metaproducts is independent of the position within the OS, while its conversion to retinol is strongly spatially non-uniform, being the fastest at the OS base and slowest at the tip. This spatial gradient of retinol production is abolished by dialysis of saponin-permeabilized OSs with exogenous NADPH or substrates for its production by the hexose monophosphate pathway (NADP + glucose-6-phosphate or 6-phosphogluconate, glucose-6-phosphate alone). Following dialysis by these agents, retinol production is accelerated by several-fold compared to the fastest rates observed in intact cells in standard Ringer solution. We propose that the speed of retinol production is set by the availability of NADPH which in turn depends on ATP supply within the outer segment. We also suggest that principal source of this ATP is from mitochondria located within the ellipsoid region of the inner segment.

Keywords

Visual cycle
Visual pigments
Gecko
Photoreceptors
Retinal
Retinol

Cited by (0)

1

The two authors contributed equally to this work.