Skip to main content
Log in

Evolution by hybridisation. The influence of reticulate evolution on biosymmetrical patterns and processes in plants

  • Published:
Theory in Biosciences Aims and scope Submit manuscript

Abstract

Natural hybridisation in plants is one of the most striking modes of evolution, when looking at the effects reticulation may have on patterns and processes of the evolutionary history of the affected system. Among other functional constraints, symmetry is regarded as a major factor of or for evolution. A loss of symmetry, that means origin of asymmetrical phenomena can in some cases be linked to environmental or genetic stresses, such as hybridisation. It has been shown that the discussion on reticulation and symmetrical evolution is strongly influenced by a zoocentric evolutionary view, but more focus is needed on the differences between the organisms subject to the study. Plant hybridogenic evolution with the subsequent possibility of polyploidisation and the consequent reduced homology is a completely different phenomenon compared to animal evolution. This article examines the role of symmetry for plant evolution by concentration on two topics: (a) spatial asymmetry on multiple levels caused by hybridisation, and (b) temporal asymmetry (changes of rhythms inherent to specific systems) as an effect of reticulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold, M.L., 1997. Natural Hybridization in Plants. Oxford University Press, New York and Oxford.

    Google Scholar 

  • Arnold, M.L., Kentner, E.K., Johnston, J.A., Cornman, S., Bouck, A.C., 2001. Natural hybridisation and fitness. Taxon 50, 93–104.

    Article  Google Scholar 

  • Ax, P., 1984. Das Phylogenetische System. Systematisierung der lebenden Natur aufgrund ihrer Phylogenese. G. Fischer, Stuttgart and New York.

    Google Scholar 

  • Ax, P., 1988. Systematik in der Biologie. Darstellung der stammesgeschichtlichen Ordnung in der lebenden Natur. G. Fischer, Stuttgart, UTB-Taschenbücher 1502.

    Google Scholar 

  • Briggs, D., Walters, S.M., 1990. Plant Variation and Evolution. Cambridge University Press, Cambridge, MA.

    Google Scholar 

  • Brunner, H., 1999. Rechts oder links. In der Natur und anderswo. Wiley, VCH, Weinheim.

    Google Scholar 

  • Camerarius, R.J., 1694. Ueber das Geschlecht der Pflanzen (De sexu plantarum epistola) In: Möbius, M. (Hrsg.) (1899). Ostwalds Klassiker der exakten Wissenschaften Nr. 105. Verlag Wilhelm Engelmann, Leipzig.

    Google Scholar 

  • Chatti, N., Said, K., Catalan, J., Britton-Davidian, J., Auffray, J.C., 1999. Developmental instability in wild chromosomal hybrids of the house mouse. Evolution 53, 1268–1279.

    Article  Google Scholar 

  • Cintas, P., 2002. Die Chiralität lebender Systeme: Hilfe von Kristallen und Oligopeptiden. Angew. Chem. 114 (7), 1187–1193.

    Article  Google Scholar 

  • Clausen, J., 1951. Stages in the Evolution of Plant Species. Cornell University Press, Ithaca, NY.

    Google Scholar 

  • Cronquist, A., 1987. A botanical critique of cladism. Bot. Rev. 53, 1–52.

    Google Scholar 

  • Darlington, C.D., 1937. Recent Advances in Cytology. Churchill Press, London.

    Google Scholar 

  • Darwin, C., 1859. On the Origin of Species by Means of Natural Selection for the Preservation of Favoured Races in the Struggle for Life. Murray, London (Edition used: 1995, Die Entstehung der Arten durch natürliche Zuchtwahl. Verlag P. Reclam, Stuttgart).

    Google Scholar 

  • Dobzhansky, T., 1939. Die genetischen Grundlagen der Artbildung. G. Fischer, Jena.

    Google Scholar 

  • Dobzhansky, T., 1970. Genetics of the Evolutionary Process. Columbia University Press, New York and London.

    Google Scholar 

  • Donoghue, M.J., Cantino, P.D., 1988. Paraphyly, ancestors, and the goals of taxonomy: a botanical defence of cladism. Bot. Rev. 54, 107–128.

    Article  Google Scholar 

  • Doyle, J.J., 1992. Gene trees and species trees: molecular systematics as one-character taxonomy. Syst. Bot. 17 (1), 144–163.

    Article  Google Scholar 

  • Edlinger, K., 1996. Bilateralsymmetrie und Lokomotion. In: Hahn, W., Weibel, P., (Eds.), Evolutionäre Symmetrietheorie. Selbstorganisation und dynamische Systeme. Verlag S. Hirzel, Stuttgart, pp. 77–89.

    Google Scholar 

  • Freeman, D.C., Graham, J.H., Emlen, J.M., 1993. Developmental stability in plants: symmetries, stress and epigenesis. Genetica 89, 97–119.

    Article  Google Scholar 

  • Freeman, D.C., Graham, J.H., Byrd, D.W., McArthur, E.D., Turner, W.A., 1995. Narrow hybrid zone between two subspecies of big sagebrush, Artemisia tridentata (Asteraceae). III. Developmental instability. Am. J. Bot. 82 (9), 1144–1152.

    Article  Google Scholar 

  • Funk, V.A., 1985. Phylogenetic patterns and hybridization. Ann. Missouri Bot. Gard. 72, 681–715.

    Article  Google Scholar 

  • Futuyma, D.J., 1990. Evolutionsbiologie. Birkhäuser Verlag, Basel.

    Google Scholar 

  • Gottschalk, W., 1976. Die Bedeutung der Polyploidie für die Evolution der Pflanzen. In: Heberer, G., Schwanitz, F. (Eds.), Fortschritte der Evolutionsforschung Bd. VII. G Fischer, Stuttgart.

    Google Scholar 

  • Grant, V., 1971. Plant Speciation. Columbia University Press, New York and London.

    Google Scholar 

  • Grasshoff, M., 1996. Strahlige Symmetrie bei Tieren. In: Hahn, W., Weibel, P. (Eds.), Evolutionäre Symmetrietheorie. Selbstorganisation und dynamische Systeme. Verlag S. Hirzel, Stuttgart, pp. 63–75.

    Google Scholar 

  • Gutmann, W.F., 1996. Organismische Struktur als Grundlage von Symmetrie. In: Hahn, W., Weibel, P. (Eds.), Evolutionäre Symmetrietheorie. Selbstorganisation und dynamische Systeme. Verlag S. Hirzel, Stuttgart, pp. 27–40.

    Google Scholar 

  • Hahn, W., 1989. Symmetrie als Entwicklungsprinzip in Natur und Kunst. Langewiesche, Königstein.

    Google Scholar 

  • Hennig, W., 1950. Grundzüge einer Theorie der phylogenetischen Systematik. Deutscher Zentralverlag, Berlin.

    Google Scholar 

  • Hennig, W., 1982. Phylogenetische Systematik. Pareys Studientexte 34. Verlag P. Parey, Berlin and Hamburg.

    Google Scholar 

  • Hennig, W., 1984. Aufgaben und Probleme stammesgeschichtlicher Forschung. Pareys Studientexte 35. Verlag P. Parey, Berlin and Hamburg.

    Google Scholar 

  • Humphries, C.J., Chappill, J.A., 1988. Systematics as science. A response to Cronquist. Bot. Rev. 54, 129–144.

    Google Scholar 

  • Johannsen, W., 1903. Über Erblichkeit in Populationen und reinen Linien. Ein Beitrag zur Beleuchtung schwebender Selektionsfragen. G. Fischer, Jena.

    Google Scholar 

  • Klein, P., 1996. Symmetrie—universales Kausalprinzip. In: Hahn, W., Weibel, P. (Eds.), Evolutionäre Symmetrietheorie. Selbstorganisation und dynamische Systeme. Verlag S. Hirzel, Stuttgart, pp. 203–218.

    Google Scholar 

  • Kornet, D.J., Turner, H., 1999. Coding polymorphism for phylogeny reconstruction. Syst. Biol. 48, 365–379.

    Article  PubMed  CAS  Google Scholar 

  • Kümmerer, K., 1995. Rhythmen der Natur. Die Bedeutung von Eigenzeiten und Systemzeiten. In: Held, M., Geißler, K.A. (Eds.), Von Rhythmen und Eigenzeiten. Perspektiven einer Ökologie der Zeit. S. Hirzel, Stuttgart, pp. 169–178.

    Google Scholar 

  • Kümmerer, K., 1997. Die Bedeutung der Zeit I: Die Vernachlässigung der Zeit in den Umweltwissenschaften. Beispiele-Folgen-Perspektiven. Z. Umweltchem. Ökotox. 9 (1), 49–54.

    Google Scholar 

  • Kümmerer, K., Held, M., 1997a. Die Bedeutung der Zeit II: Die Umweltwissenschaften im Kontext von Zeit: Begriffe unter dem Aspekt der Zeit. Z. Umweltchem. Ökotox. 9 (3), 169–178.

    Google Scholar 

  • Kümmerer, K., Held, M., 1997b. Die Bedeutung der Zeit III: Die Vielfalt der Zeiten in den Umweltwissenschaften: Herausforderung und Hilfe. Z. Umweltchem. Ökotox. 9 (5), 283–290.

    Google Scholar 

  • Levin, D.A., 1971. the origin of reproductive isolating mechanisms in flowering plants. Taxon 20 (1), 91–113.

    Article  Google Scholar 

  • Lotsy, J.P., 1926. Evolution im Lichte der Bastardierung betrachtet. Transl. by H.N. Kooiman. Genetica VII. M. Nijhoff, Haag, 365–470.

    Google Scholar 

  • Mayer-Kuckuck, T., 1989. Der gebrochene Spiegel. Symmetrie, Symmetriebrechung und Ordnung in der Natur. Birkhäuser Verlag, Basel.

    Google Scholar 

  • Mayr, E., 1963. Animal species and evolution. The Belknap Press Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Mayr, E., 1965. Numerical phenetics and taxonomic theory. Syst. Zool. 14, 73–97.

    Article  Google Scholar 

  • Mayr, E., 1967. Artbegriff und Evolution. Paul Parey, Hamburg and Berlin.

    Google Scholar 

  • McDade, L., 1990. Hybrids and phylogenetic systematics. I. Patterns of character expression in hybrids and their implications for cladistic analysis. Evolution 44, 1685–1700.

    Article  Google Scholar 

  • McDade, L., 1992. Hybrids and phylogenetic systematics. II. The impact of hybrids on cladistic analysis. Evolution 46, 1329–1346.

    Article  Google Scholar 

  • Møller, A.P., Swaddle, J.P., 1997. Asymmetry, Developmental Stability, and Evolution. Oxford University Press, Oxford.

    Google Scholar 

  • Nei, M., 1987. Molecular evolutionary genetics. Columbia University Press, New York.

    Google Scholar 

  • Nichols, R., 2001. Gene trees and species trees are not the same. Trends Ecol. Evol. 16 (7), 358–364.

    Article  PubMed  Google Scholar 

  • Parsons, P.A., 1992. Fluctuating asymmetry: a biological monitor of environmental and genomic stress. Heredity 68, 361–364.

    PubMed  Google Scholar 

  • Philiptschenko, J., 1927. Variabilität und Variation. Verlag Gebrüder Bornträger, Berlin.

    Google Scholar 

  • Rannala, B., 1995. Polymorphic characters and phylogenetic analysis: a statistical perspective. Syst. Biol. 44, 412–429.

    Article  Google Scholar 

  • Riedl, R., 1975. Die Ordnung des Lebendigen. Systembedingungen der Evolution. Verlag P. Parey. Hamburg and Berlin.

    Google Scholar 

  • Rieseberg, L.H., Ellstrand, N.C., 1993. What can molecular and morphological markers tell us about plant hybridization? Crit. Rev. Plant Sci. 12 (3), 213–241.

    Article  CAS  Google Scholar 

  • Ritland, K., Eckenwalder, J.E., 1992. Polymorphism, hybridization, and variable evolutionary rate in molecular phylogenies. In: Soltis, P.S., Soltis, D.E., Doyle, J.J. (Eds.), Molecular Systematics of Plants. Chapman & Hall, New York, London, pp. 404–428.

    Google Scholar 

  • Schemske, D.W., 2000. Understanding the origin of species. Evolution 54, 1069–1073.

    Google Scholar 

  • Sewertzoff, A.N., 1931. Morphologische Gesetzmässigkeiten der Evolution. G. Fischer, Jena.

    Google Scholar 

  • Simpson, G.W., 1951. Zeitmaße und Ablaufformen der Evolution. Wissenschaftlicher Verlag “Musterschmidt”, Göttingen.

    Google Scholar 

  • Sitte, P., 1986. Bio-Symmetrie. In: Symmetrie in Kunst, Natur und Wissenschaft, vol. 1. Ausstellungskatalog Mathildenhöhe Darmstadt, pp. 47–58.

  • Sitte, P., 1988. Symmetrie. In: Herder, F., et al. (Eds.), Lexikon der Biologie, vol. 8. pp. 128–131.

  • Small, R.L., Wendel, J.F., 2000. Copy number lability and evolutionary dynamics of the Adh gene family in diploid and tetraploid cotton (Gossypium). Genetics 155, 1913–1926.

    PubMed  CAS  Google Scholar 

  • Small, R.L., Wendel, J.F., 2002. Differential evolutionary dynamics of duplicated paralogous Adh loci in allotetraploid cotton (Gossypium). Mol. Biol. Evol. 19 (5), 597–607.

    PubMed  CAS  Google Scholar 

  • Small, R.L., Ryburn, J.A., Wendel, J.F., 1999. Low levels of nucleotide diversity at homoeologous Adh Loci in allotetraploid cotton (Gossypium L.). Mol. Biol. Evol. 16 (4), 491–501.

    PubMed  CAS  Google Scholar 

  • Stebbins, G.L., 1950. Variation and Evolution in Plants. Columbia University Press, New York, 2. Printing 1951, Columbia Biological Series XVI.

    Google Scholar 

  • Stebbins, G.L., 1974. Flowering Plants. Evolution Above the Species Level. Belknap Press Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Thompson, D’A.W., 1992. On growth and form, The complete revised edition. Cambridge University Press, Cambridge, MA.

    Google Scholar 

  • Wägele, J.-W., 2001. Grundlagen der phylogenetischen Systematik. Verlag Dr. Friedrich Pfeil, München.

    Google Scholar 

  • Wagenitz, G., 1997. The impact of molecular methods on the systematics of angiosperms. Bot. Acta 110, 274–281.

    Google Scholar 

  • Wagenitz, G., 2003. Wörterbuch der Botanik-Die Termini in ihrem historischen Zusammenhang. Spektrum Akademischer Verlag, Heidelberg and Berlin.

    Google Scholar 

  • Wiens, J.J., 1995. Polymorphic characters in phylogenetic systematics. Syst. Biol. 44, 482–500.

    Article  Google Scholar 

  • Willmann, R., 1985. Die Art in Zeit und Raum. Das Artkonzept in der Biologie und Paläontologie. P. Parey, Berlin and Hamburg.

    Google Scholar 

  • Wilsey, B.J., Haukioja, E., Koricheva, J., Sulkinoja, M., 1998. Leaf fluctuating asymmetry increases with hybridization and elevation in tree-line birches. Ecology 79 (6), 2092–2099.

    Article  Google Scholar 

  • Winkler, H., 1912. Untersuchungen über Pfropfbastarde. Erster Teil: Die unmittelbare gegenseitige Beeinflussung der Pfropfsymbionten. G. Fischer, Jena.

    Google Scholar 

  • Wissemann, V., 2000. Molekulargenetische und morphologisch-anatomische Untersuchungen zur Evolution und Genomzusammensetzung von Wildrosen der Sektion Caninae (DC) Ser. Bot. Jahrb. Syst. 122 (3), 357–429.

    Google Scholar 

  • Wissemann, V., 2002. Perspektivische Biosystematik im historischen Kontext, eine conditio sine qua non? In: Müller-Wille, S. (Ed.) Sammeln—Ordnen—Wissen. Beiträge zu einem Festkolloquium aus Anlaß des 80 Geburtstages von Ilse Jahn. MPI for the History of Science, Preprint 215, pp. 53–57.

  • Wissemann, V., 2003. Hybridization and the evolution of the nrITS spacer region. In: Sharma, A.K., Sharma, A. (Eds.), Plant Genome, Biodiversity and Evolution, vol. 1. Teil A. Science Publishers, Inc., Enfield, New Hampshire, pp. 57–71.

    Google Scholar 

  • Wuketits, F.M., 1996. Evolution und Symmetrie. In: Hahn, W., Weibel, P. (Eds.), Evolutionäre Symmetrietheorie. Selbstorganisation und dynamische Systeme. Verlag S. Hirzel, Stuttgart, pp. 13–23.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wissemann, V. Evolution by hybridisation. The influence of reticulate evolution on biosymmetrical patterns and processes in plants. Theory Biosci. 123, 223–233 (2005). https://doi.org/10.1016/j.thbio.2004.09.003

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.thbio.2004.09.003

Key words

Navigation