Macroecological patterns of American Cutaneous Leishmaniasis transmission across the health areas of Panamá (1980–2012)

https://doi.org/10.1016/j.parepi.2016.03.003Get rights and content
Under a Creative Commons license
open access

Abstract

American Cutaneous Leishmaniasis (ACL) is a neglected vector-borne zoonosis that persists despite increasing socio-economic development and urbanization in Panamá. Here, we investigate the association between environmental changes and spatio-temporal ACL transmission in the Republic of Panamá (1980–2012). We employ a macroecological approach, where patterns of variation in ACL incidence at the spatially coarse-grained scale of health areas are studied considering factors linked to the ecology of ACL transmission. We specifically study impacts of climatic variability, measured by the different phases of El Niño Southern Oscillation (ENSO), within diverse ecosystems and sand fly (Diptera: Psychodidae) vector species, as well as heterogeneous local climatic patterns, deforestation, population growth rates, and changes in social marginalization. We found that over the study period, patterns of ACL incidence: (i) were asynchronous with clusters changing from east to west of the Panamá Canal, (ii) trends increased in the west, and decreased or remained nearly constant in the east, independent of human population growth, (iii) generally increased in years following El Niño, and (iv) decreased as forest cover increased. We found no significant association between changes in socio-economic indicators and ACL transmission. Regarding vector abundance and presence, we found that studies had been biased to locations east of the Panamá canal, and that, in general, the abundance of dominant vector species decreased during the cold phase of ENSO. Finally, our results indicate that a macroecological approach is useful to understand heterogeneities related to environmental change impacts on ACL transmission.

Keywords

El Niño
Reservoirs
Deforestation
Marginalization
Sand fly vectors

Cited by (0)