Elsevier

Ocean Engineering

Volume 176, 15 March 2019, Pages 169-183
Ocean Engineering

An extended ice failure model to improve the fidelity of icebreaking pattern in numerical simulation of ship performance in level ice

https://doi.org/10.1016/j.oceaneng.2019.02.051Get rights and content
Under a Creative Commons license
open access

Highlights

  • An engineering ice failure model which gives more realistic icebreaking pattern compared to state-of-the-art is proposed.

  • This model takes various ship and ice related factors into consideration and therefore is physically sound.

  • The model is integrated into a numerical simulation model for ships performance in level ice.

  • Ice photos gathered from full-scale test are measured and analyzed to support and validate the model.

Abstract

The modelling of the ice failure including icebreaking pattern and ice bearing capacity is an important issue in numerical simulations of ships going through level ice, in order to predict ship performance and ice loads. Previous studies model the shape of ice cusps assuming a simplified geometry, e.g. circular or triangular. According to the observations during full-scale ship trials, the geometry of the ice cusps is more elliptical rather than circular, with larger breaking length at the edges than that at the center. In this paper, a new ice failure model is developed which results in more realistic cusp shapes compared to existing approaches. The model is based on an analytically-derived differential equation, which is solved numerically via the Finite Difference Method (FDM). The predictions of ice cusps geometry are validated against full-scale measurement of ice cusps, obtained with an on-board stereo camera system. Satisfying agreement is shown. The ice failure model is incorporated into a numerical model for the prediction of ship performance in level ice. The predictions are compared with ship speed record obtained from a full-scale trial. It is shown that the model gives reasonable results for ship speed.

Keywords

Icebreaking pattern
Numerical simulation
Level ice
Ship performance in ice

Cited by (0)