Molecular Cell
Volume 52, Issue 4, 21 November 2013, Pages 583-590
Journal home page for Molecular Cell

Short Article
R Loops Are Linked to Histone H3 S10 Phosphorylation and Chromatin Condensation

https://doi.org/10.1016/j.molcel.2013.10.006Get rights and content
Under an Elsevier user license
open archive

Highlights

  • R-loop-accumulating yeast, C. elegans, and human cells show high levels of H3S10P

  • H3S10P and R loops accumulate at centromeres, pericentromeric regions, and active ORFs

  • R loops trigger H3S10 phosphorylation, as RNaseH overexpression reduces H3S10P levels

  • R loops and H3S10P are linked to chromatin condensation and compaction

Summary

R loops are transcription byproducts that constitute a threat to genome integrity. Here we show that R loops are tightly linked to histone H3 S10 phosphorylation (H3S10P), a mark of chromatin condensation. Chromatin immunoprecipitation (ChIP)-on-chip (ChIP-chip) analyses reveal H3S10P accumulation at centromeres, pericentromeric chromatin, and a large number of active open reading frames (ORFs) in R-loop-accumulating yeast cells, better observed in G1. Histone H3S10 plays a key role in maintaining genome stability, as scored by ectopic recombination and plasmid loss, Rad52 foci, and Rad53 checkpoint activation. H3S10P coincides with the presence of DNA-RNA hybrids, is suppressed by ribonuclease H overexpression, and causes reduced accessibility of restriction endonucleases, implying a tight connection between R loops, H3S10P, and chromatin compaction. Such histone modifications were also observed in R-loop-accumulating Caenorhabditis elegans and HeLa cells. We therefore provide a role of RNA in chromatin structure essential to understand how R loops modulate genome dynamics.

Cited by (0)