129Xe NMR analysis of pore structures and adsorption phenomena in rare-earth element phosphates

https://doi.org/10.1016/j.micromeso.2022.112209Get rights and content
Under a Creative Commons license
open access

Highlights

  • Rare Earth Elements (REEs) are critical in many high technology applications.

  • Phosphate compounds are one of the prevalent hosts of REE3+ ions in minerals.

  • For the first time 129Xe NMR is used to study REEPO4 samples.

  • Analysis reveals mesopore sizes, heats of adsorption and effect of moisture.

  • Computational modelling confirms the validity of analysis.

Abstract

Rare-earth elements (REEs) are indispensable in various applications ranging from catalysis to batteries and they are commonly found from phosphate minerals. Xenon is an excellent exogenous NMR probe for materials because it is inert and its 129Xe chemical shift is very sensitive to its local physical or chemical environment. Here, we exploit, for the first time, 129Xe NMR for the characterization of porous structures and adsorption properties of REE phosphates (REEPO4). We study four different REEPO4 samples (REE = La, Lu, Sm and Yb), including both light (La and Sm) and heavy (Lu and Yb) as well as diamagnetic (La and Lu) and paramagnetic (Sm and Yb) REEs. 129Xe resonances are very sensitive to the porous structures and moisture content of the REEPO4 samples. In the samples treated at a lower temperature (80 °C), free water hinders the access of hydrophobic xenon into small mesopores, but the treatment at a higher temperature (200 °C) removes the free water and allows xenon to explore the mesopores. Based on a standard two-site exchange model analysis of the variable-temperature 129Xe chemical shifts, as well as its proposed, novel modification for paramagnetic materials, the average mesopore sizes were determined. The size was the largest (79 nm) for the La sample with mixed monazite (70%) and rhabdophane (30%) phases and the smallest (6 nm) for the Yb sample with pure xenotime phase. The mesopore sizes of the Lu and Yb samples (12 and 6 nm) differed by a factor of two regardless of their similar xenotime phase. The 129Xe NMR analysis revealed that the heats of adsorption of the samples are similar, varying between 8.7 and 10.1 kJ/mol. For diamagnetic samples, computational modelling confirmed the order of magnitude of the chemical shifts of Xe adsorbed on surfaces and therefore the validity of the two-site exchange model analysis. Overall, 129Xe NMR provides exceptionally versatile information about the pore structures and adsorption properties of REEPO4 materials, which may be very useful for developing the extraction processes and applications of REEs.

Keywords

Rare-earth element phosphate
129Xe NMR spectroscopy
DFT calculations

Data availability

Data will be made available on request.

Cited by (0)