Comptes Rendus
Spectroscopy and planetary atmospheres/Spectroscopie et atmosphères planétaires
Spectroscopic challenges for high accuracy retrievals of atmospheric CO2 and the Orbiting Carbon Observatory (OCO) experiment
[Défis spectroscopiques pour la détermination ultra-précise des quantités de CO2 atmosphérique par l'expérience Orbiting Carbon Observatory (OCO)]
Comptes Rendus. Physique, Volume 6 (2005) no. 8, pp. 876-887.

La mission spatiale Orbiting Carbon Observatory (OCO) fournira les mesures globales nécessaires pour étudier les gradients spatiaux et temporels des quantités de CO2 dans notre atmosphère. Avec une mise en orbite prévue par la NASA en 2008, cet instrument déterminera la fraction molaire (XCO2) moyenne avec une précision de une partie par million (1 ppm, 0.3%) afin de quantifier les variations des sources et puits de CO2 et d'améliorer les prévisions météorologiques à venir. Les déterminations de XCO2 à partir du sol devront avoir une précision encore supérieure afin de valider les données satellites pour qu'elles satisfassent, sans biais, les standards de la World Meteorological Organization (WMO) pour ce qui concerne les observations du CO2 atmosphérique. Ces mesures par télédétection dans l'infrarouge proche nécessiteront de connaître les paramètres spectroscopiques avec une précision sans précédent. Cet article présente les méthodes expérimentales et d'analyse des données qui sont développées au laboratoire afin d'atteindre cet objectif.

The space-based Orbiting Carbon Observatory (OCO) mission will achieve global measurements needed to distinguish spatial and temporal gradients in the CO2 column. Scheduled by NASA to launch in 2008, the instrument will obtain averaged dry air mole fraction (XCO2) with a precision of 1 part per million (0.3%) in order to quantify the variation of CO2 sources and sinks and to improve future climate forecasts. Retrievals of XCO2 from ground-based measurements require even higher precisions to validate the satellite data and link them accurately and without bias to the World Meteorological Organization (WMO) standard for atmospheric CO2 observations. These retrievals will require CO2 spectroscopic parameters with unprecedented accuracy. Here we present the experimental and data analysis methods implemented in laboratory studies in order to achieve this challenging goal.

Publié le :
DOI : 10.1016/j.crhy.2005.09.005
Keywords: Carbon dioxide (CO2), Orbiting Carbon Observatory (OCO), Near infrared spectroscopy
Mot clés : Dioxyde de carbone (CO2), Orbiting Carbon Observatory (OCO), Spectroscopie proche infrarouge
Charles E. Miller 1 ; Linda R. Brown 1 ; Robert A. Toth 1 ; D. Chris Benner 2 ; V. Malathy Devi 2

1 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109-8099, USA
2 Department of Physics, College of William and Mary, Williamsburg, VA 23187-8795, USA
@article{CRPHYS_2005__6_8_876_0,
     author = {Charles E. Miller and Linda R. Brown and Robert A. Toth and D. Chris Benner and V. Malathy Devi},
     title = {Spectroscopic challenges for high accuracy retrievals of atmospheric {CO\protect\textsubscript{2}} and the {Orbiting} {Carbon} {Observatory} {(OCO)} experiment},
     journal = {Comptes Rendus. Physique},
     pages = {876--887},
     publisher = {Elsevier},
     volume = {6},
     number = {8},
     year = {2005},
     doi = {10.1016/j.crhy.2005.09.005},
     language = {en},
}
TY  - JOUR
AU  - Charles E. Miller
AU  - Linda R. Brown
AU  - Robert A. Toth
AU  - D. Chris Benner
AU  - V. Malathy Devi
TI  - Spectroscopic challenges for high accuracy retrievals of atmospheric CO2 and the Orbiting Carbon Observatory (OCO) experiment
JO  - Comptes Rendus. Physique
PY  - 2005
SP  - 876
EP  - 887
VL  - 6
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crhy.2005.09.005
LA  - en
ID  - CRPHYS_2005__6_8_876_0
ER  - 
%0 Journal Article
%A Charles E. Miller
%A Linda R. Brown
%A Robert A. Toth
%A D. Chris Benner
%A V. Malathy Devi
%T Spectroscopic challenges for high accuracy retrievals of atmospheric CO2 and the Orbiting Carbon Observatory (OCO) experiment
%J Comptes Rendus. Physique
%D 2005
%P 876-887
%V 6
%N 8
%I Elsevier
%R 10.1016/j.crhy.2005.09.005
%G en
%F CRPHYS_2005__6_8_876_0
Charles E. Miller; Linda R. Brown; Robert A. Toth; D. Chris Benner; V. Malathy Devi. Spectroscopic challenges for high accuracy retrievals of atmospheric CO2 and the Orbiting Carbon Observatory (OCO) experiment. Comptes Rendus. Physique, Volume 6 (2005) no. 8, pp. 876-887. doi : 10.1016/j.crhy.2005.09.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2005.09.005/

[1] R.F. Keeling; S.R. Shertz Seasonal and interannual variations in atmospheric oxygen and implications for the global carbon-cycle, Nature, Volume 358 (1992), pp. 723-727

[2] Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (J.T. Houghton; Y. Ding; D.J. Griggs; M. Noguer; P.J. van der Linden; X. Dai; K. Maskell; C.A. Johnson, eds.), Cambridge Univ. Press, Cambridge, UK and New York, 2001 (881 pp)

[3] R.C. Schnell; D.B. King; R.M. Rosson Climate modeling and diagnostics laboratory summary report No. 25 (1998–1999), Report No. 25, 2001 and GLOBALVIEW-CO2: Cooperative atmospheric integration project—carbon dioxide, NOAA CMDL, Boulder, CO, 2001 http://www/cmdl/noaa/gov/ccgg/globalview/co2

[4] P.M. Cox; R.A. Betts; C.D. Jones; S.A. Spall; I.J. Totterdell Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model, Nature, Volume 408 (2000), pp. 184-187

[5] P. Friedlingstein; L. Bopp; P. Ciais; J.L. Dufresne; L. Fairhead; H. LeTreut; P. Monfray; J. Orr Positive feedback between future climate change and the carbon cycle, Geophys. Res. Lett., Volume 28 (2001), pp. 1543-1546

[6] P.J. Rayner; D.M. O'Brien The utility of remotely sensed CO2 concentration data in surface source inversions, Geophys. Res. Lett., Volume 28 (2001), pp. 175-178

[7] D. Crisp et al. The Orbiting Carbon Observatory (OCO) mission, Adv. Space Res., Volume 34 (2004), p. 700

[8] C.E. Miller et al., Precision requirements for space-based XCO2 data, J. Geophys. Res., submitted for publication

[9] A. Chedin; A. Hollingsworth; N.A. Scott; S. Serrar; C. Crevoisier; R. Armante Annual and seasonal variations of atmospheric CO2, N2O and CO concentrations retrieved from NOAA/TOVS satellite observations, Geophys. Res. Lett., Volume 29 (2002) | DOI

[10] M.J. Christi; G.L. Stephens Retrieving profiles of atmospheric CO2 in clear sky and in the presence of thin cloud using spectroscopy from the near and thermal infrared: A preliminary case study, J. Geophys. Res., Volume 109 (2004) (D04316) | DOI

[11] R.J. Engelen; A.S. Denning; K.R. Gurney; G.L. Stephens Global observations of the carbon budget. 1. Expected satellite capabilities for emission spectroscopy in the EOS and NPOESS eras, J. Geophys. Res., Volume 106 (2001), p. 20,055-20,068

[12] R.J. Engelen; G.L. Stephens Information content of infrared satellite sounding measurements with respect to CO2, J. Appl. Meteorol., Volume 43 (2004), pp. 373-378

[13] D.P. Edwards; L.L. Strow Spectral line shape considerations for limb temperature sounders, J. Geophys. Res., Volume 96 (1991), p. 20,859-20,868

[14] M. McHugh; B. Magill; K.A. Walker; C.D. Boone; P.F. Bernath; J.M. Russell Comparison of atmospheric retrievals from ACE and HALOE, Geophys. Res. Lett., Volume 32 (2005) (L15S10) | DOI

[15] V.M. Devi; C.D. Benner; M.A.H. Smith; L.R. Brown; M. Dulick Absolute intensity measurements of the 12C16O2 laser bands near 10 μm, J. Quant. Spec. Rad. Transfer, Volume 76 (2003), pp. 393-410

[16] V.M. Devi; C.D. Benner; M.A.H. Smith; L.R. Brown; M. Dulick Multispectrum analysis of pressure broadening and pressure shift coefficients in the 12C16O2 and 13C16O2 laser bands, J. Quant. Spec. Rad. Transfer, Volume 67 (2003), pp. 411-434

[17] L. Wallace; W. Livingston Spectroscopic observation of atmospheric trace gases over Kitt Peak: 1. Carbon dioxide and methane from 1979 to 1985, J. Geophys. Res., Volume 95 (1990), pp. 9823-9827

[18] Z.H. Yang; G.C. Toon; J.S. Margolis; P.O. Wennberg Atmospheric CO2 retrieved from ground-based near IR spectra, Geophys. Res. Lett., Volume 29 (2002) | DOI

[19] J.H. Park Atmospheric CO2 monitoring from space, Appl. Opt., Volume 36 (1997), pp. 2701-2712

[20] C. Corsi; F. D'Amato; M. De Rosa; G. Modugno High-resolution measurements of line intensity, broadening and shift of CO2 around 2 μm, Eur. Phys. J. D, Volume 6 (1999), pp. 327-332

[21] M. de Rosa; C. Corsi; M. Gabrysch; F. D'Amato Collisional broadening and shift of lines in the (2ν1+2ν2+ν3) band of CO2, J. Quant. Spec. Rad. Transfer, Volume 61 (1999), pp. 97-104

[22] J. Henningsen; H. Simonsen The (2201–0000) band of CO2 at 6348 cm−1: linestrengths, broadening parameters, and pressure shifts, J. Mol. Spectrosc., Volume 203 (2000), pp. 16-27

[23] L.S. Rothman; D. Jacquemart; A. Barbe; D.C. Benner; M. Birk; L.R. Brown; M.R. Carleer; C. Chackerian; K. Chance; V. Dana; V.M. Devi; J.M. Flaud; R.R. Gamache; A. Goldman; J.-M. Hartmann; K.W. Jucks; A.G. Maki; J.Y. Mandin; S. Massie; J. Orphal; A. Perrin; C.P. Rinsland; M.A.H. Smith; R.A. Toth; J. Vander Auwera; P. Varanasi; G. Wagner The HITRAN 2004 molecular spectroscopic database, J. Quant. Spec. Rad. Transfer, Volume 96 (2005), pp. 139-204

[24] M. Birk; D. Hausamann; G. Wagner; J.W. Johns Determination of line strengths by Fourier-transform spectroscopy, Appl. Opt., Volume 35 (1996), pp. 2971-2985

[25] L.P. Giver; L.R. Brown; C. Chackerian; R.S. Freedman The rovibrational intensities of five absorption bands of 12C16O2 between 5218 and 5349 cm−1, J. Quant. Spec. Rad. Transfer, Volume 67 (2003), pp. 417-436

[26] L.P. Giver; C. Chackerian; M.N. Spencer; L.R. Brown; R.B. Wattson The rovibrational intensities of the 40010000 pentad absorption bands of 12C16O2 between 7284 and 7921 cm−1, J. Mol. Spectrosc., Volume 175 (1996), pp. 104-111

[27] Y.I. Baranov; W.J. Lafferty; G.T. Fraser; A.A. Vigasin On the origin of the band structure observed in the collision-induced absorption bands of CO2, J. Mol. Spectrosc., Volume 218 (2003), pp. 260-261

[28] P.P. Tans, Personal communication, 2002

[29] C.R. Pollock; F.R. Petersen; D.A. Jennings; J.S. Wells; A.G. Maki Absolute frequency measurements of the 2–0 band of CO at 2.3 μm: calibration standard frequencies from high resolution color center laser spectroscopy, J. Mol. Spectrosc., Volume 99 (1983), pp. 357-368

[30] K. Nakagawa; M. deLabachelerie; Y. Awaji; M. Kourogi Accurate optical frequency atlas of the 1.5-μm bands of acetylene, J. Opt. Soc. Am. B—Opt. Phys., Volume 13 (1996), pp. 2708-2714

[31] M. Kusaba; J. Henningsen The ν1+ν3 and the ν1+ν2+ν41+ν5−1 combination bands of 13C2H2. Linestrengths, broadening parameters, and pressure shifts, J. Mol. Spectrosc., Volume 209 (2001), pp. 216-227

[32] A. Onae; K. Okumura; J. Yoda; K. Nakagawa; A. Yamaguchi; M. Kourogi; K. Imai; B. Widiyatomoko Toward an accurate frequency standard at 1.5 μm based on the acetylene overtone band transition, IEEE Trans. Instrum. Meas., Volume 48 (1999), pp. 563-566

[33] D.C. Benner; C.P. Rinsland; V.M. Devi; M.A.H. Smith; D. Atkins A multispectrum nonlinear least-squares fitting technique, J. Quant. Spec. Rad. Transfer, Volume 53 (1995), pp. 705-721

[34] V. Dana; J.-Y. Mandin; G. Guelachvili; Q. Kou; M. Morillon-Chapey; R.B. Wattson; L.S. Rothman Intensities and self-broadening coefficients of 12C16O2 lines in the laser band region, J. Mol. Spectrosc., Volume 152 (1992), pp. 328-341

[35] J.W. Brault; L.R. Brown; C. Chackerian; R.S. Freedman; A. Predoi-Cross; A.S. Pine Self-broadened 12C16O line shapes in the v=20 band, J. Mol. Spectrosc., Volume 222 (2003), pp. 220-239

[36] N. Picqué; G. Guelachvili; V. Dana; J.Y. Mandin Absolute line intensities, vibrational transition moment, and self-broadening coefficients for the 3–0 band of 12C16O, J. Mol. Struct., Volume 517 (2000), pp. 427-434

[37] D. Jacquermart; J.Y. Mandin; V. Dana; N. Picqué; G. Guelachvili A multispectrum fitting procedure to deduce molecular line parameters: application to the 3–0 band of 12C16O, Eur. Phys. J. D, Volume 14 (2001), pp. 55-69

[38] J. Henningsen; H. Simonsen; T. Mogelberg; E. Trudso The 03 overtone band of CO: precise linestrengths and broadening parameters, J. Mol. Spectrosc., Volume 193 (1999), pp. 354-362

[39] C. Chackerian; R.S. Freedman; L.P. Giver; L.R. Brown Absolute rovibrational intensities and self-broadening and self-shift coefficients for the V=3V=0 band of 12C16O, J. Mol. Spectrosc., Volume 210 (2001), pp. 119-126

[40] M. Devi; D.C. Benner; M.A.H. Smith; C.P. Rinsland; A.W. Mantz Determination of self- and H2-broadening and shift coefficients in the 2–0 band of 12C16O using a multispectrum fitting procedure, J. Quant. Spec. Rad. Transfer, Volume 75 (2002), pp. 455-471

[41] Q. Zou; P. Varanasi New laboratory data on the spectral line parameters in the 1–0 and 2–0 bands of 12C16O relevant to atmospheric remote sensing, J. Quant. Spec. Rad. Transfer, Volume 75 (2002), pp. 63-92

[42] R.L. Hawkins; M.L. Hoke; J.H. Shaw Band parameters of N2O and CO2 determined by whole band analysis, Proc. Soc. Photo-Opt. Instr. Eng., Volume 289 (1981), pp. 99-201

[43] C.L. Lin; J.H. Shaw Line parameters determined by spectral curve fitting, J. Opt. Soc. Am., Volume 67 (1977), p. 1442

[44] P.W. Rosenkranz Shape of the 5 mm oxygen band in the atmosphere, IEEE Trans. Ant. Prop., Volume AP-23 (1975), pp. 498-506

[45] A. Levy; N. Lacome; C. Chackerian Collisional line mixing (K.N. Rao; A. Weber, eds.), Spectroscopy of the Earth's Atmosphere and Interstellar Medium, Academic Press, Boston, MA, 1992, pp. 261-337 (Chapter 2)

[46] R. Ciurylo; J. Szudy Speed-dependent pressure broadening and shift in the soft collision approximation, J. Quant. Spec. Rad. Transfer, Volume 57 (1997), pp. 411-423

[47] R. Ciurylo; A.S. Pine Speed-dependent line mixing profiles, J. Quant. Spec. Rad. Transfer, Volume 67 (2000), pp. 375-393

[48] R. Ciurylo; A.S. Pine; J. Szudy A generalized speed-dependent line profile combining soft and hard partially correlated Dicke-narrowing collisions, J. Quant. Spec. Rad. Transfer, Volume 68 (2001), pp. 257-271

[49] F. Niro; C. Boulet; J.-M. Hartmann Spectra calculations in central and wing regions of CO2 IR bands between 10 and 20 μm. I: Model and laboratory measurements, J. Quant. Spec. Rad. Transfer, Volume 88 (2004), pp. 483-498

[50] F. Niro; F. Hase; C. CamyPeyret; S. Payan; J.-M. Hartmann Spectra calculations in central and wing regions of CO2 IR bands between 10 and 20 μm. II: Atmospheric solar occultation spectra, J. Quant. Spec. Rad. Transfer, Volume 90 (2005), pp. 43-59

[51] F. Niro; T. von Clarman; K. Jucks; J.-M. Hartmann Spectra calculations in central and wing regions of CO2 IR bands between 10 and 20 μm. III: Atmospheric emission spectra, J. Quant. Spec. Rad. Transfer, Volume 90 (2005), pp. 61-76

[52] F. Niro; K. Jucks; J.-M. Hartmann Spectra calculations in central and wing regions of CO2 IR bands. IV: Software and database for the computation of atmospheric spectra, J. Quant. Spec. Rad. Transfer, Volume 95 (2005), pp. 469-481

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

History and future of the molecular spectroscopic databases

Laurence S. Rothman; Nicole Jacquinet-Husson; Christian Boulet; ...

C. R. Phys (2005)


A review of remote sensing techniques and related spectroscopy problems

Sébastien Payan; Jérôme de La Noë; Alain Hauchecorne; ...

C. R. Phys (2005)


Spaceborne remote sensing of greenhouse gas concentrations

François-Marie Bréon; Philippe Ciais

C. R. Géos (2010)