Comptes Rendus
Research towards a wake-vortex advisory system for optimal aircraft spacing
[Recherches sur des systèmes de détection des tourbillons pour réduire les distances de séparation entre avions]
Comptes Rendus. Physique, Volume 6 (2005) no. 4-5, pp. 501-523.

L'un des principaux objectifs des recherches sur les tourbillons de sillages d'avions est l'assouplissement des normes qui fixent les distances de séparation entre avions, à l'atterrissage et au décollage. Ces changements doivent en même temps assurer une amélioration de la sécurité en regard du danger que représentent les tourbillons de sillage. La réalisation de ces objectifs s'appuie en particulier sur le développement de systèmes opérationnels de détection et de caractérisation in situ des tourbillons, systèmes qui doivent être couplés à une capacité de prévision de la météorologie locale. On effectue dans cet article une revue des effets de l'environnement atmosphérique sur la dynamique des tourbillons. On décrit ensuite divers systèmes de détection et de décision développés en Europe et aux USA. On présente notamment quelques résultats de campagnes de mesure réalisées pour valider diverses composantes de ces systèmes.

Wake turbulence is a major concern for busy airports since it limits capacity. Solutions for new aircraft staggering procedures are sought which relax the current separations but keep safety on a high level. Systems which advice air-traffic control on wake-vortex behaviour under present and expected weather conditions will, hopefully, contribute to such a solution. Knowledge on transport and decay of wake vortices in the atmosphere is presented. Concepts and designs of wake-vortex advisory systems in Europe and the USA are outlined. European wake-vortex measurement and prediction campaigns are described where the components of such systems have been tested successfully.

Publié le :
DOI : 10.1016/j.crhy.2005.06.002
Keywords: Aircraft wake vortices, Atmosphere, Air traffic control, Optimal aircraft spacing
Mot clés : Tourbillons de sillage, Atmosphère, Contrôle aérien
Thomas Gerz 1 ; Frank Holzäpfel 1 ; Wayne Bryant 2 ; Friedrich Köpp 1 ; Michael Frech 1 ; Arnold Tafferner 1 ; Grégoire Winckelmans 3

1 Deutsches Zentrum für Luft- und Raumfahrt, Institute of Atmospheric Physics, Oberpfaffenhofen, 82230 Wessling, Germany
2 National Aeronautics and Space Administration, Langley Research Center, Hampton, VA 23681, USA
3 Mechanical Engineering Department, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
@article{CRPHYS_2005__6_4-5_501_0,
     author = {Thomas Gerz and Frank Holz\"apfel and Wayne Bryant and Friedrich K\"opp and Michael Frech and Arnold Tafferner and Gr\'egoire Winckelmans},
     title = {Research towards a wake-vortex advisory system for optimal aircraft spacing},
     journal = {Comptes Rendus. Physique},
     pages = {501--523},
     publisher = {Elsevier},
     volume = {6},
     number = {4-5},
     year = {2005},
     doi = {10.1016/j.crhy.2005.06.002},
     language = {en},
}
TY  - JOUR
AU  - Thomas Gerz
AU  - Frank Holzäpfel
AU  - Wayne Bryant
AU  - Friedrich Köpp
AU  - Michael Frech
AU  - Arnold Tafferner
AU  - Grégoire Winckelmans
TI  - Research towards a wake-vortex advisory system for optimal aircraft spacing
JO  - Comptes Rendus. Physique
PY  - 2005
SP  - 501
EP  - 523
VL  - 6
IS  - 4-5
PB  - Elsevier
DO  - 10.1016/j.crhy.2005.06.002
LA  - en
ID  - CRPHYS_2005__6_4-5_501_0
ER  - 
%0 Journal Article
%A Thomas Gerz
%A Frank Holzäpfel
%A Wayne Bryant
%A Friedrich Köpp
%A Michael Frech
%A Arnold Tafferner
%A Grégoire Winckelmans
%T Research towards a wake-vortex advisory system for optimal aircraft spacing
%J Comptes Rendus. Physique
%D 2005
%P 501-523
%V 6
%N 4-5
%I Elsevier
%R 10.1016/j.crhy.2005.06.002
%G en
%F CRPHYS_2005__6_4-5_501_0
Thomas Gerz; Frank Holzäpfel; Wayne Bryant; Friedrich Köpp; Michael Frech; Arnold Tafferner; Grégoire Winckelmans. Research towards a wake-vortex advisory system for optimal aircraft spacing. Comptes Rendus. Physique, Volume 6 (2005) no. 4-5, pp. 501-523. doi : 10.1016/j.crhy.2005.06.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2005.06.002/

[1] T. Gerz; F. Holzäpfel; D. Darracq Commercial aircraft wake vortices, Progr. Aerosp. Sci., Volume 38 (2002), pp. 181-208

[2] G. Astegiani, D. Casanova, E. Isambert, J. van Engelen, V. Treve, Final report WP 1000 system requirements, ATC-Wake Deliverable D1_5, 2003, 41 pp

[3] D.A. Hinton, J.K. Charnock, D.R. Bagwell, Design of an aircraft vortex spacing system for airport capacity improvement, in: AIAA Proc. 2000-0622, 2000

[4] P. Fiduccia; W. Bryant; S. Lang FAA/NASA wake turbulence research program, J. Air Traffic Control, Volume 46 (2004) no. 1, p. 17

[5] J.N. Hallock, Vortex advisory system safety analysis, vol. I: Analytical model, Report FAA-RD-78–68, I, Cambridge, MA, DOT Transportation Systems Center, 1978

[6] C. Le Roux; A. Corjon Wake vortex advisory system implementation at Orly airport for departing aircraft, Air Traffic Control Quarterly, Volume 5 (1997), pp. 31-48

[7] T. Gurke; H. Lafferton The development of the wake vortex warning system for Frankfurt airport: Theory and implementation, Air Traffic Control Quarterly, Volume 5 (1997), pp. 3-29

[8] V.J. Rossow Lift-generated vortex wakes of subsonic transport aircraft, Prog. Aerosp. Sci., Volume 35 (1999), pp. 507-660

[9] V.V. Vyshinsky Flight safety, aircraft vortex wake and airport operational capacity, Trudy TsAGI, Volume 2641 (1999), p. 17

[10] E. Coustols, L. Jacquin, F. Moens, Status of ONERA research on wake vortex in the framework of national activities and European collaboration, in: Proc. of the European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS), Jyväskylä, 2004, p. 10

[11] E. Coustols, E. Stumpf, L. Jacquin, F. Moens, H. Vollmers, T. Gerz, Minimised wake: a collaborative research programme on aircraft wake vortices, in: AIAA Proc. 2003-0938, 2003

[12] T. Gerz, T. Ehret, Wake dynamics and exhaust distribution behind cruising aircraft, in: The Characterization & Modification of Wakes from Lifting Vehicles in Fluids, AGARD CP 584, 1996, pp. 35.1–35.8

[13] F. Risso; A. Corjon; A. Stoessel Direct numerical simulations of wake vortices in intense homogeneous turbulence, AIAA J., Volume 35 (1997), pp. 1030-1040

[14] J. Han, Y.-L. Lin, S. Pal Arya, F.H. Proctor, Large eddy simulation of aircraft wake vortices in homogeneous atmospheric turbulence: vortex decay and descent, in: AIAA Proc. 99-0756, 1999

[15] T. Gerz; F. Holzäpfel Wingtip vortices, turbulence, and the distribution of emissions, AIAA J., Volume 37 (1999) no. 10, pp. 1270-1276

[16] F. Holzäpfel; T. Gerz; M. Frech; A. Dörnbrack Wake vortices in a convective boundary layer and their influence on following aircraft, J. Aircraft, Volume 37 (2000) no. 6, pp. 1001-1007

[17] F.H. Proctor, G.F. Switzer, Numerical simulation of aircraft trailing vortices, in: Proc. 9th Conference on Aviation, Range and Aerospace Meteorology, Orlando, 2000

[18] F. Holzäpfel; T. Gerz; R. Baumann The turbulent decay of trailing vortex pairs in stably stratified environments, Aerosp. Sci. Technol., Volume 5 (2001), pp. 95-108

[19] F. Holzäpfel; T. Hofbauer; D. Darracq; H. Moet; F. Garnier; C. Ferreira Gago Analysis of wake vortex decay mechanisms in the atmosphere, Aerosp. Sci. Technol., Volume 7 (2003), pp. 263-275

[20] R.E. Robins; D.P. Delisi Numerical study of vertical shear and stratification effects on the evolution of a vortex pair, AIAA J., Volume 28 (1990) no. 4, pp. 661-669

[21] F.H. Proctor, Numerical simulation of wake vortices measured during the Idaho Falls and Memphis field programs, in: AIAA Proc. 96-2496, 1996

[22] F.H. Proctor, D.A. Hinton, J. Han, D.G. Schowalter, Y.-L. Lin, Two-dimensional wake vortex simulations in the atmosphere: Preliminary sensitivity studies, in: AIAA Proc. 97-0056, 1997

[23] T. Hofbauer, T. Gerz, Shear-layer effects on the dynamics of a counter-rotating vortex pair, in: AIAA Proc. 2000-0758, 2000

[24] T. Hofbauer, Numerische Untersuchungen zum Einfluss von Windscherung und Turbulenz auf Flugzeugwirbelschleppen, DLR-FB 2003-01, Köln, 2003, p. 111

[25] M. Frech; T. Zinner Wake vortex behaviour classes and their initial validation, J. Aircraft, Volume 41 (2004) no. 3, pp. 564-570

[26] P. Agnew; D. Hoad Climatology study of world airports in the context of wake vortex behaviour classes, Proc. 10th Conference on Aviation, Range and Aerospace Meteorology, Portland, 2002

[27] A. de Bruin, L. Speijker, H. Moet, B. Krag, R. Luckner, S. Mason, S-wake, assessment of wake vortex safety, NLR Technical Report 2003-243, 2003, 76 pp

[28] R.E. Loucel, J.D. Crouch, Flight-simulator study of airplane encounters with perturbed trailing vortices, in: AIAA Proc. 2004-1074, 2004

[29] T. Gerz, M. Frech, K.-U. Hahn, F. Holzäpfel, F. Köpp, C. Schwarz, I. Smalikho, A. Tafferner, Atmospheric impact on wake vortex development, in: Proc. of the European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS), Jyväskylä, 2004, p. 14

[30] M. Frech; F. Holzäpfel; T. Gerz; J. Konopka Short term prediction of the horizontal wind vector within a wake vortex warning system, Meteorol. Appl., Volume 9 (2002), pp. 9-20

[31] M. Frech; F. Holzäpfel A probabilistic prediction scheme for wake vortex evolution in a convective boundary layer, Air Traffic Control Quarterly, Volume 10 (2002), pp. 23-42

[32] G.A. Grell; S. Emeis; W.R. Stockwell; T. Schoenemeyer; T. Forkel; J. Michalakes; R. Knoche; W. Seidl Application of a multiscale, coupled MM5/chemistry model to the complex terrain of the VOTALP valley campaign, Atmos. Environm., Volume 34 (2000), pp. 1435-1453

[33] G. Doms; U. Schaettler The nonhydrostatic Limited Area Model LM (Lokal Modell) of DWD. Part I: Scientific Documentation, Deutscher Wetterdienst, Offenbach, 1999

[34] E.M. North; A.M. Peterson RASS, a remote sensing system for measuring low-level temperature profiles, Bull. Amer. Meteor. Soc., Volume 54 (1973), pp. 912-919

[35] S.W. Henderson; P.J.M. Suni; C.P. Hale; S.M. Hannon; J.R. Magee; D.L. Bruns; E.H. Yuen Coherent laser radar at 2 μm using solid-state lasers, IEEE Trans. Geosci. Remote Sensing, Volume 31 (1993), pp. 4-15

[36] F. Köpp; S. Rahm; I. Smalikho Characterisation of aircraft wake vortices by 2-μm pulsed Doppler lidar, J. Atmos. Oceanic Tech., Volume 21 (2004), pp. 194-206

[37] I. Smalikho; V. Banakh; F. Köpp; Ch. Werner Laser remote sensing of the mean wind, Atmos. Oceanic Opt., Volume 15 (2002), pp. 607-614

[38] I. Smalikho, F. Köpp, S. Rahm, Measurement of atmospheric turbulence by 2-μm Doppler lidar, DLR-Report 200, 2004, p. 37; J. Atmos. Oceanic Tech., in press

[39] World Meteorological Organisation, Aircraft Meteorological Data Relay (AMDAR) Reference Manual, WMO-No. 958, Geneva, 2003, p. 24

[40] L.B. Cornman; C.S. Morse; C. Cunning Real-time estimation of atmospheric turbulence severity from in situ aircraft measurements, J. Aircraft, Volume 32 (1995) no. 1, pp. 171-177

[41] F. Holzäpfel A probabilistic two-phase wake vortex decay and transport model, J. Aircraft, Volume 40 (2003) no. 2, pp. 323-331

[42] F. Holzäpfel; R.E. Robins Probabilistic two-phase aircraft wake vortex model: Application and assessment, J. Aircraft, Volume 41 (2004) no. 5, pp. 1117-1126

[43] F. Holzäpfel; T. Gerz; F. Köpp; E. Stumpf; M. Harris; R.I. Young; A. Dolfi-Bouteyre Strategies for circulation evaluation of aircraft wake vortices measured by lidar, J. Atmos. Oceanic Tech., Volume 20 (2003) no. 8, pp. 1183-1195

[44] T. Hofbauer, F. Holzäpfel, Behavior of aircraft wake vortices subjected to wind shear, in: AIAA Proc. 2003-3813, 2003

[45] G.J. Hahn; S.S. Shapiro Statistical Models in Engineering, Wiley & Sons, New York, 1967

[46] G. Winckelmans Vortex methods (E. Stein; R. de Borst; T.J.R. Hughes, eds.), Encyclopedia of Computational Mechanics, 3, Wiley & Sons, New York, 2004

[47] W. Jackson, M. Yaras, J. Harvey, G. Winckelmans, G. Fournier, A. Belotserkovsky, Wake vortex prediction – an overview, Phase 6 and Project Final Report, P 13629E, 2001

[48] G. Winckelmans, H. Jeanmart, Demonstration of a wake vortex prediction system: the Vortex Forecast System (VFS), in: Proc. 5th WakeNet Workshop on Wake Turbulence and the Airport Environment, Langen, 2001

[49] G. Winckelmans, V. Treve, L. Bricteux, VFS results on the benchmark for wake vortices IGE, in: Proc. WakeNet-USA and WakeNet2-Europe Workshop on The Prediction of Wake Vortices in Ground Effects in an Operational Context, New Orleans, 2004

[50] T. Sarpkaya, A new model for vortex decay in atmosphere, in: AIAA Proc. 99-0761, 1999

[51] T. Sarpkaya, R.E. Robins, D.P. Delisi, Wake-vortex eddy-dissipation model predictions compared with observations, in: AIAA Proc. 2000-0625, 2000

[52] G. Winckelmans, P. Ploumhans, Prediction of aircraft wake vortices in takeoff and landing, Phase 4 Final Report, TP 13374E, 1999

[53] G. Winckelmans, F. Thirifay, P. Ploumhans, Effect of non-uniform wind shear onto vortex wakes: parametric models for operational systems and comparison with CFD studies, in: Proc. 4th WakeNet Workshop on Wake Vortex Encounter, Amsterdam, 2000

[54] G.C. Greene An approximate model of vortex decay in the atmosphere, J. Aircraft, Volume 23 (1986), pp. 566-573

[55] G. Winckelmans, V. Treve, O. Desenfans, Real-time safety advising system in reduced wake vortex separations operation, as developed in ATC-Wake, in: 2nd WakeNet2-Europe Workshop on Capacity Gains as Function of Weather and Weather Prediction Capabilities, Langen, 2004

[56] H. Frauenkron, J. Biegholdt, M. Maiss, P. Nalpanis, E. Smith, FLIP – flight performance using Frankfurt ILS, a statistical evaluation of navigational performance of ILS-approaches at Frankfurt International Airport, DFS German Air Navigation Services, Air Traffic Management Division, Offenbach, 2001

[57] V.J. Rossow Reduction of uncertainties in prediction of wake-vortex locations, J. Aircraft, Volume 39 (2002), pp. 587-596

[58] K.-U. Hahn, Coping with wake vortex, in: Proc. 23rd International Congress of Aeronautical Sciences, 2002, pp. 732.1–732.14

[59] K.-U. Hahn, Wake vortex encounter avoidance, in: First Workshop of WakeNet2-Europe, London-Heathrow, November 11–12, 2003

[60] K.-U. Hahn, C. Schwarz, H. Friehmelt, A simplified hazard area prediction (SHAPe) model for wake vortex encounter avoidance, in: Proc. 24th International Congress of Aeronautical Sciences, 2004

[61] L. Speijker, S-Wake – final report for work package 4 probabilistic safety assessment, NLR Technical Report 2003-248, 2003, p. 59

[62] http://www.nlr.nl/public/en/index.php?pid=6100 (See:)

[63] T. Gerz, Wake vortex prediction and observation: Towards an operational system, in: Proc. 3rd ONERA-DLR Aerospace Symposium, Paris, 2001, p. 10

[64] K. Friedrich; M. Hagen Evaluation of wind vectors measured by a bistatic Doppler radar network, J. Atmos. Oceanic Tech., Volume 21 (2004), pp. 1840-1854

[65] F. Köpp; I. Smalikho; S. Rahm; A. Dolfi; J.-P. Cariou; M. Harris; R.I. Young; K. Weekes; N. Gordon Characterisation of aircraft wake vortices by multiple-lidar triangulation, AIAA J., Volume 41 (2003), pp. 1081-1088

[66] M. Frech, A. Tafferner, The performance of the model system NOWVIV to forecast the horizontal wind over an airport, in: Proc. 10th Conference on Aviation, Range and Aerospace Meteorology, Portland, 2002

[67] M. Keane; D. Buckton; M. Redfern; C. Bollig; C. Wedekind; F. Köpp; F. Berni Axial detection of aircraft wake vortices using Doppler lidar, J. Aircraft, Volume 39 (2002), pp. 850-862

[68] S. Campbell, T. Dasey, R. Freehart, R. Heinrichs, M. Matthews, G. Perras, Wake vortex field measurement program at Memphis, TN, in: AIAA Proc. 96-0399, 1996

[69] T. Dasey; S. Campbell; R. Heinrichs; M. Matthews; R. Freehart; G. Perras; P. Salamitou A comprehensive system for measuring wake vortex behavior and related atmospheric conditions at Memphis, Tennessee, Air Traffic Control Quarterly, Volume 5 (1997) no. 1, pp. 49-68

[70] R.E. Robins, D.P. Delisi, G.C. Greene, Development and validation of a wake vortex prediction algorithm, in: AIAA Proc. 98-0665, 1998

[71] D.G. Schowalter, D.S. DeCroix, Y.-L. Lin, F.H. Proctor, S.P. Arya, M.L. Kaplan, Turbulent statistics in the atmospheric boundary layer: A comparison of large eddy simulation with observations, in: 11th Symposium on Boundary Layers and Turbulence, March 27–31, 1995, Charlotte, NC

[72] C.L. Britt, D.P.C. Nguyen, G. Koch, Pulsed lidar measurements of aircraft wake vortices at DFW and JFK, in: AIAA Proc. 99-0982, 1999

[73] http://www.sensis.com/docs/128/ (See:)

[74] http://www.faa.gov/asos/ (See:)

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Radar monitoring of a wake vortex: Electromagnetic reflection of wake turbulence in clear air

Frédéric Barbaresco; Uwe Meier

C. R. Phys (2010)


Airplane trailing vortices and their control

Jeffrey Crouch

C. R. Phys (2005)