Elsevier

Basic and Applied Ecology

Volume 11, Issue 6, September 2010, Pages 513-521
Basic and Applied Ecology

Abiotic stress and transgenics: Implications for reproductive success and crop-to-wild gene flow in Brassicas

https://doi.org/10.1016/j.baae.2010.06.007Get rights and content

Abstract

Various abiotic and biotic stressors affect crop and weed plant performance in agroecosystems. Ozone (O3) tolerance in plants is partly regulated by the genotype and phenotypical properties, and it varies greatly in related species of wild and crop backgrounds. Thus, a continuous increase in atmospheric O3 concentration could change population dynamics of sexually compatible crop and weed species, and consequently affect crop-to-wild gene flow in the future. One way to build resistance against a biotic stressor, in this case insect-mediated herbivory, in crop plants is transgene-mediated insecticidal toxin production. In this study we aimed to describe how the physiological and phenological responses in a crop Brassica and its weedy relatives functioned to affect their comparative O3 tolerance. Furthermore, we studied how harbouring a transgene affects these responses in B. napus and B. rapa × transgenic B. napus BC2F2 backcross hybrid plants to reveal any within-plant trade-offs among toxin production, growth and O3 tolerance. We found a higher number of O3 symptoms but more effective compensatory assimilate allocation directed to reproduction for wild B. rapa compared to crop B. napus under elevated O3. This result suggested that the invasion-orientated strategy of producing a high number of seeds when vegetative growth is limited might improve the performance of weedy species under elevated O3. The probabilities for crop-to-wild transgene flow could be increased through higher seed production in hybrids under elevated O3, but the germination of hybrid seeds in particular was hampered by O3. The presence of transgenes did not perturb fecundity, within-plant biomass allocation or O3 tolerance of B. napus.

Zusammenfassung

Verschiedene abiotische und biotische Faktoren beeinflussen die Performanz der Nutz- und Unkrautpflanzen in Agrarökosystemen. Die Ozon-(O3)-Toleranz der Pflanzen wird teilweise durch den Genotyp und durch phänotypische Eigenschaften reguliert und variiert in großem Maße bei verwandten Pflanzen mit einem wilden bzw. Nutzpflanzen-Hintergrund. Deshalb könnte eine kontinuierlich steigende O3-Konzentration in der Atmosphäre die Populationsdynamik von sexuell kompatiblen Nutz- und Unkrautarten verändern und in der Zukunft als Konsequenz den Genfluss von Nutz- zu Unkrautarten beeinflussen. Ein Weg um eine Resistenz gegenüber einem biotischen Stressor, in diesem Fall die Herbivorie durch Insekten, bei einer Nutzpflanze aufzubauen, ist die transgen vermittelte Produktion von insektiziden Toxinen. In dieser Untersuchung war es unser Ziel, zu beschreiben, wie die physiologischen und phänologischen Reaktionen bei der Nutzpflanze Brassica und ihren verwandten Unkräutern funktionierten, um ihre O3-Toleranz im Vergleich zu beeinflussen. Darüber hinaus untersuchten wir, wie die Anwesenheit eines Transgens diese Reaktionen bei B. napus und transgenen B. rapa x B. napus BC2F2 Rückkreuzungshybriden beeinflusst, um irgendwelche “trade offs” zwischen der Toxinproduktion, dem Wachstum und der O3-Toleranz innerhalb der Pflanzen festzustellen. Im Vergleich zu genutztem B. napus fanden wir unter erhöhtem O3-Gehalt eine größere Anzahl von O3-Symptomen aber auch eine effektivere, kompensatorische Assimilate-Allokation in Richtung auf die Reproduktion bei wildem B. rapa. Dieses Ergebnis lässt vermuten, dass, wenn das vegetative Wachstum limitiert ist, die invasionsorientierte Strategie durch die Produktion einer großen Anzahl von Samen die Performanz der unkrautartigen Arten bei erhöhtem O3-Gehalt verbessern könnte. Die Wahrscheinlichkeit für den Genfluss von transgenen Nutz- zu Wildpflanzen könnte durch die höhere Samenproduktion bei Hybriden bei erhöhtem O3-Gehalt erhöht sein, wenn auch die Keimung der Hybridsamen bei erhöhtem O3-Gehalt behindert wurde. Die Anwesenheit von Transgenen störte bei B. napus weder die Fruchtbarkeit, noch die Biomassenallokation innerhalb der Pflanze oder die O3-Toleranz.

Introduction

Diurnal background concentration of tropospheric ozone (O3) already exceeds 40 ppb in many regions and trends towards increasing levels are predicted to continue for the coming decades (Sitch, Cox, Collins, & Huntingford 2007). This can make O3 an important contributor on plant competitive dynamics. Oxidative stress by elevated O3 is a severe environmental challenge for plants: phytotoxic symptoms arise and this affects photosynthetic processes, phenological development and yield (Booker et al. 2009). Most wild plant species are classified as susceptible to O3 compared with crop species, which have been selected through breeding to be more robust under variable environments (Pleijel and Danielson, 1997, Davison and Barnes, 1998, Biswas et al., 2008). Genetically regulated O3 tolerance (Biswas et al. 2008), but also differences in phenology (e.g. maturation age), life-histories (Pleijel & Danielson 1997) and phenotypes (Overmyer et al. 2008) affect O3 responses of plants and could alter the competitive dynamics of co-species under elevated O3.

The introduction of transgenic crops has initiated wide ecological research of potential gene escape into native species (Stewart, Halfhill, & Warwick 2003). The probabilities for transgene flow have been extensively studied on Brassicas (e.g. Warwick et al., 2003, Halfhill et al., 2004, Kelly et al., 2005, Warwick et al., 2008), since wild Brassica species occur worldwide and exist commonly in agroecosystems. They are capable of hybridizing with cultivated Brassicas, which enables segregation of common genomic material among these plants (Wilkinson et al., 2003a, Halfhill et al., 2004). Unwanted introgression of transgenes into wild species could have severe ecological consequences, although the pathway required for a transgene to be fully introgressed into a wild-plant genotype is a complicated one in which the success of the hybrids are crucial (Wilkinson, Sweet, & Poppy 2003). Environmental stresses, including elevated O3, are candidates for affecting the performance and competitiveness of introgressed plant individuals and thus are critical in assessing the environmental risk of a transgene introgressing into the genome of a crop's wild relatives. Our study is the first to compare the performance of nontransgenic and transgenic crops, wild relatives and introgressed transgene-carrying back-cross hybrid plants under elevated O3.

Bacillus thuringiensis (Bt) Cry1Ac-transgenic oilseed rape (Brassica napus ssp. oleifera), insecticidal against numerous key Lepidopteran Brassica pests, is a model plant used widely in ecological risk assessment studies for crop-to-wild gene flow (e.g. Halfhill et al., 2001, Warwick et al., 2003). Previously, we have shown that Bt toxin concentration in Bt-producing B. napus is not compromised by, but increased under high atmospheric O3 (Himanen et al. 2009), and the plants exhibit similar responses to chronic and acute O3 elevation during vegetative growth as their nontransgenic parent plants (Himanen et al. 2008). Here, our first aim was to test for a trade-off, as a result of intrinsic costs of constitutive Bt toxin production, among reproduction and O3 tolerance in Bt B. napus. Secondly, we assessed whether elevated O3 affects certain physiological characteristics (growth, allocation to reproduction, seed size) and therefore the performance of sexually compatible wild B. rapa and crop B. napus plants, representing different ecological life-history strategies (Moles and Westoby 2006), in a different way. Finally, we evaluated the O3 responses and within-plant allocation patterns of introgressed Bt-transgene-carrying B. rapa × B. napus BC2F2 back-crossed hybrid plants to reveal whether elevated O3 could affect the probability of transgene escape through altered performance or reproduction of hybrids. Our results could reveal important aspects for assessing competitive advantage of introgressed transgene-carrying hybrids, wild relatives and crop plants in future O3-enriched atmospheres.

Section snippets

Materials and methods

Plants used in the experiments were: 1) non-transgenic Brassica napus ssp. oleifera (oilseed rape) cv. Westar (parent line), 2) its Bt-transgenic line GT1 F4 (containing a synthetic Bt Cry1Ac gene and a green fluorescent protein (gfp) marker gene under CaMV 35S promoters, as described by Halfhill et al. 2001), 3) Brassica rapa wild accession 2974 (Milby, Québec, Canada; Halfhill et al. 2005) and 4) wild B. rapa (described above) × crop (Bt-transgenic GT1 B. napus) BC2F2 hybrid carrying the

Vegetative growth stage responses

At 22 days after sowing, transgene-harbouring BC2F2 hybrid and wild B. rapa plants had higher leaf DW than the B. napus genotypes (Table 1, Table 2). By day 33, O3 reduced leaf DW in B. rapa (PO3<0.05), whereas there was no difference in leaf DW between genotypes at this time-point. Photosynthesis rates were similar in all plant genotypes and at both O3 levels at day 22 (Table 1, Table 2). By days 28 and 35, the photosynthesis rate was lower in hybrid and B. rapa plants than in B. napus

Ozone tolerance of wild and cultivated Brassicas: implications for crop–weed population dynamics

The high percentage of O3 lesions and reduced photosynthesis rates in wild B. rapa and transgene-carrying back-crossed hybrid plants suggested high O3 sensitivity, which is typical for native species (Davison & Barnes 1998). B. rapa plants had earlier senescence under elevated O3 than crop B. napus plants, and O3-induced differences in phenology might reduce overlap of their flowering periods and, hence, cross-fertilization. Important from the aspect of reproduction was also the increased

Acknowledgments

We thank Timo Oksanen for technical help and Virpi Tiihonen, Jaana Rissanen, Juuso Heinonen and Maria Saastamoinen for assistance in experiments. This work was supported by the Academy of Finland (grant no. 105209) (S.J.H., A-M.N. and J.K.H.), the Finnish Cultural Foundation (S.J.H.), ISONET (MRTN-CT-2003-504720) (J.K.H.), USDA Biotechnology Risk Assessment Program (C.N.S.), BBSRC and NERC (G.M.P.).

References (26)

  • S.J. Himanen et al.

    Elevated atmospheric ozone increases concentration of insecticidal Bacillus thuringiensis (Bt) Cry1Ac protein in Bt Brassica napus and reduces feeding of a Bt target herbivore on the non-transgenic parent

    Environmental Pollution

    (2009)
  • M.J. Wilkinson et al.

    Risk assessment of GM plants: Avoiding gridlock?

    Trends in Plant Science

    (2003)
  • D.K. Biswas et al.

    Genotypic differences in leaf biochemical, physiological and growth responses to ozone in 20 winter wheat cultivars released over the past 60 years

    Global Change Biology

    (2008)
  • V.J. Black et al.

    Ozone affects gas exchange, growth and reproductive development in Brassica campestris (Wisconsin Fast Plants)

    New Phytologist

    (2007)
  • F. Booker et al.

    The ozone component of global change: Potential effects on agricultural and horticultural plant yield, product quality and interactions with invasive species

    Journal of Integrative Plant Biology

    (2009)
  • A.W. Davison et al.

    Effects of ozone on wild plants

    New Phytologist

    (1998)
  • M.D. Halfhill et al.

    Additive transgene expression and genetic introgression in multiple green-fluorescent protein transgenic crop × weed hybrid generations

    Theoretical and Applied Genetics

    (2003)
  • M.D. Halfhill et al.

    Expression of GFP and Bt transgenes in Brassica napus and hybridization with Brassica rapa

    Theoretical and Applied Genetics

    (2001)
  • M.D. Halfhill et al.

    Growth, productivity, and competitiveness of introgressed weedy Brassica rapa hybrids selected for the presence of Bt cry1Ac and gfp transgenes

    Molecular Ecology

    (2005)
  • M.D. Halfhill et al.

    Hybridization and backcrossing between transgenic oilseed rape and two related weed species under field conditions

    Environmental Biosafety Research

    (2004)
  • M.M. Harbur et al.

    Light and growth rate effects on crop and weed responses to nitrogen

    Weed Science

    (2004)
  • S.J. Himanen et al.

    Constitutive and herbivore-inducible glucosinolate concentrations in oilseed rape (Brassica napus) leaves are not affected by Bt Cry1Ac insertion but change under elevated atmospheric CO2 and O3

    Planta

    (2008)
  • C.K. Kelly et al.

    An analytical model assessing the potential threat to natural habitats from insect resistance transgenes

    Proceedings of the Royal Society B-Biological Sciences

    (2005)
  • Cited by (5)

    View full text