Skip to main content
Log in

Development of a Bionic Hexapod Robot for Walking on Unstructured Terrain

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

This paper reports the design methodology and control strategy in the development of a novel hexapod robot HITCR-II that is suitable for walking on unstructured terrain. First, the entire sensor system is designed to equip the robot with the perception of external environment and its internal states. The structure parameters are optimized for improving the dexterity of the robot. Second, a foot-force distribution model and a compensation model are built to achieve posture control. The two models are capable of effectively improving the stability of hexapod walking on unstructured terrain. Finally, the Posture Control strategy based on Force Distribution and Compensation (PCFDC) is applied to the HITCR-II hexapod robot. The experimental results show that the robot can effectively restrain the vibration of trunk and keep stable while walking and crossing over the un-structured terrains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cruse H. What mechanisms coordinate leg movement in walking arthropods. Trends in Neuroscience, 1990, 13, 15–21.

    Article  Google Scholar 

  2. Li F, Liu W T, Fu X, Bonsignori G, Scarfogliero U, Stefanini C, Dario P. Jumping like an insect: Design and dynamic optimization of a jumping mini robot based on biomimetic inspiration. Mechatronics, 2012, 22, 167–176.

    Article  Google Scholar 

  3. Pearson K G, Franklin R. Characteristics of leg movements and patterns of coordination in locusts walking on rough terrain. Journal of Robotics Research, 1984, 3, 101–112.

    Article  Google Scholar 

  4. Yoo Y H, Ahmed M, Bartsch S, Kirchner F. Realistic simulation of extraterrestrial legged robot in trade-off between accuracy and simulation time. Proceedings of 36th Annual Conference on IEEE Industrial Electronics Society, Glendale, America, 2010.

    Google Scholar 

  5. Hauser K, Bretl T, Latombe J C, Harada K, Wilcox B. Motion planning for legged robots on varied terrain. The International Journal of Robotics Research, 2008, 27, 1325–1349.

    Article  Google Scholar 

  6. Cobano F A, Ponticelli R, Santos P G. Mobile robotic system for detection and location of antipersonnel land mines: Field tests. Industrial Robot: An International Journal, 2008, 35, 520–527.

    Article  Google Scholar 

  7. Sanz-Merodio D, Garcia E, Gonzalez-de-Santos P. Analyzing efficient configurations in hexapod robots for demining applications. The International Journal of Robotics Research, 2012, 39, 357–364.

    Google Scholar 

  8. Kennedy B, Okon A, Aghazarian H, Badescu M, Bao X B, Cohen Y B, Chang Z, Dabiri B E, Garrett M, Magnone L, Sherrit S. Lemur IIb: A robotic system for steep terrain access. Industrial Robot: An International Journal, 2006, 33, 265–269.

    Article  Google Scholar 

  9. Delcomyn F. Neural basis of rhythmic behavior in animals. Science, 1990, 210, 492–498.

    Article  Google Scholar 

  10. Steingrube S, Timme M, Worgotter F, Manoonpong W P. Self-organized adaption of a simple neural circuit enables complex robot behaviour. Nature physics, 2010, 6, 224–230.

    Article  Google Scholar 

  11. Wang T T, Guo W, Li M T, Zha F S, Sun L N. CPG control for biped hopping robot in unpredictable environment. Journal of Bionic Engineering, 2012, 9, 29–38.

    Article  Google Scholar 

  12. Spenneberg D, Mccullough K, Kirchner F. Stability of walking in a multilegged robot suffering leg loss. Proceedings of 2004 ICRA: International conference on robotics and automation, Bremen, Germany, 2004.

    Google Scholar 

  13. Cruse H, Bartling C H, Dreifert M, Schmitz J, Brunn D E, Dean J, Kindermann T. Walking: A complex behavior controlled by simple networks. Adaptive Behavior, 1995, 3, 385–418.

    Article  Google Scholar 

  14. Cruse H, Kindermann T, Schumm M. Walknet-a biologically inspired network to control six-legged walking. Neural Networks, 1998, 11, 1435–1447.

    Article  Google Scholar 

  15. Cruse H, Durr V, Schmitz J, Scheneider A. Control of hexapod walking in biological systems. Proceedings of the 2nd International Symposium on Adaptive Motion of Animals and Machines, Kyoto, Japan, 2003.

    Google Scholar 

  16. Quinn R D, Nelson G M, Bachmann R J. Parallel complementary strategies for implementing biological principles into mobile robots. The International Journal of Robotics Research, 2003, 22, 169–186.

    Article  Google Scholar 

  17. Gassmann B, Scholl K U, Berns K. Locomotion of LAURON III in rough terrain. Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Como, Italy, 2001.

    Google Scholar 

  18. Gorner M, Wimbock T, Hirzinger G. The DLR Crawler: Evaluation of gaits and control of an actively compliant six-legged walking robot. Industrial Robot: An International Journal, 2009, 36, 344–351.

    Article  Google Scholar 

  19. Lin P, Komsuoglu H, Koditschek D E. A leg configuration measurement system for full-body pose estimates in a hexapod robot. IEEE Transactions on robotics, 2005, 21, 411–1422.

    Article  Google Scholar 

  20. Nelson G M, Quinn R D. Posture control of a cockroach-like robot. Control Systems, 1999, 19, 9–14.

    Article  Google Scholar 

  21. Boscariol P, Henrey M A, Li Y S, Menon C. Optimal gait for bioinspired climbing robots using dry adhesion: A quasistatic investigation. Journal of Bionic Engineering, 2013, 10, 1–11.

    Article  Google Scholar 

  22. Chen F, Zhao J, Zang X Z, Yan J H. Free gait generation method for omnidirectional locomotion on abrupt terrain with multilegged biomimetic robot. Journal of Harbin Institute of Technology (New Series), 2011, 18, 101–108.

    Google Scholar 

  23. Zhao J, Zhang H, Liu Y B, Zhou Z W. Active compliance control for the leg of hexapod robot HITCR-II. Applied Mechanics and Materials, 2012, 201, 578–581.

    Article  Google Scholar 

  24. Palli G, Pirozzi S. A miniaturized optical force sensor for tendon-driven mechatronic systems: Design and experimental evaluation. Mechatronics, 2012, 22, 1097–1111.

    Article  Google Scholar 

  25. Dwarakanath T A, Bhutani G. Beam type hexapod structure based six component force–torque sensor. Mechatronics, 2011, 21, 1279–1287.

    Article  Google Scholar 

  26. Mura A. Six d.o.f. displacement measuring device based on a modified Stewart platform. Mechatronics, 2011, 21, 1309–1316.

    Article  Google Scholar 

  27. Alipour K, Moosavian S A A. How to ensure stable motion of suspended wheeled mobile robot. Industrial Robot: An International Journal, 2012, 38, 139–152.

    Article  Google Scholar 

  28. Zhao J, Zhang H, Liu Y B, Chen F. Development of the hexapod robot HITCR-I and experiment of walking on unstructured terrain. Journal of South China University of Technology (Natural Science Edition), 2012, 40, 17–23. (In Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Liu, Y., Zhao, J. et al. Development of a Bionic Hexapod Robot for Walking on Unstructured Terrain. J Bionic Eng 11, 176–187 (2014). https://doi.org/10.1016/S1672-6529(14)60041-X

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1672-6529(14)60041-X

Keywords

Navigation