Current Biology
Volume 10, Issue 11, 1 June 2000, Pages 659-662
Journal home page for Current Biology

Brief Communication
A mutation in the Lunatic fringe gene suppresses the effects of a Jagged2 mutation on inner hair cell development in the cochlea

https://doi.org/10.1016/S0960-9822(00)00522-4Get rights and content
Under an Elsevier user license
open archive

Abstract

Recent studies have demonstrated that the Notch signaling pathway regulates the differentiation of sensory hair cells in the vertebrate inner ear 1, 2, 3, 4, 5, 6, 7, 8, 9. We have shown previously that in mice homozygous for a targeted null mutation of the Jagged2 (Jag2) gene, which encodes a Notch ligand, supernumerary hair cells differentiate in the cochlea of the inner ear [7]. Other components of the Notch pathway, including the Lunatic fringe (Lfng) gene, are also expressed during differentiation of the inner ear in mice 6, 7, 8, 9, 10. In contrast to the Jag2 gene, which is expressed in hair cells, the Lfng gene is expressed in non-sensory supporting cells in the mouse cochlea [10]. Here we demonstrate that a mutation in the Lfng gene partially suppresses the effects of the Jag2 mutation on hair cell development. In mice homozygous for targeted mutations of both Jag2 and Lfng, the generation of supernumerary hair cells in the inner hair cell row is suppressed, while supernumerary hair cells in the outer hair cell rows are unaffected. We also demonstrate that supernumerary hair cells are generated in mice heterozygous for a Notch1 mutation. We suggest a model for the action of the Notch signaling pathway in regulating hair cell differentiation in the cochlear sensory epithelium.

Cited by (0)