Elsevier

Archives de Pédiatrie

Volume 17, Supplement 3, September 2010, Pages S78-S84
Archives de Pédiatrie

Article
Érythropoïétine et neuroprotectionErythropoietin and neuroprotection

https://doi.org/10.1016/S0929-693X(10)70905-2Get rights and content

Résumé

L’expression multi-tissulaire du récepteur de l’érythropoïétine (Epo-R) confère à celle-ci différentes activités qui viennent s’ajouter à celle de régulation de la production des globules rouges. Cette revue se focalise sur les fonctions de l’érythropoïétine (Epo) au cours du développement du cerveau ainsi que sur ses effets dans la neuroprotection. L’Epo-R est exprimée par différents types cellulaires dans le cerveau tels que les progéniteurs de cellules neurales (NPC), les astrocytes, les neurones, les oligodendrocytes. L’Epo est produite par les cellules résidentes du cerveau sous condition hypoxique et permet ainsi la prolifération des NPC et leur différentiation. Une atteinte du développement du cerveau avec des lésions cérébrales est observée chez des souris dont les gènes de l’Epo et de son récepteur sont manquants. Dans des modèles animaux expérimentaux d’hypoxie-ischémie (HI) ou d’attaque cérébrale, l’injection d’Epo réduit la taille de la lésion ainsi que les dommages. D’un point de vue clinique, les effets thérapeutiques de l’Epo semblent prometteurs mais demandent de plus amples investigations.

Summary

Erythropoietin (Epo) has long been recognised for its role in the control of erythropoiesis and therefore in the treatment of anemia including anemia of prematurity. The erythropoietin receptor (Epo-R) though is expressed in many other organs including the CNS. This review focuses on the role of erythropoietin during the development of the CNS and its potential role as a neuroprotective agent. Epo-R is expressed in many different cellules of the CNS during development including neural progenitor cells, neurons, astrocytes and oligodendrocytes. In the event of hypoxia CNS cells respond with increase of erythropoietin release with subsequent stimulation of neurogenesis through Epo-R on neural progenitor cells. In an Epo-R knock-out model therefore cerebral development is severely impaired. In models of hypoxia-ischemia exogenous Epo has been shown to reduce lesion size and improve structural and functional recovery. Human studies are emerging using Epo as a neuroprotective agent both for the term infant with hypoxiaischemia as well as for the extremely preterm infant.

Références (53)

  • M. Sugawa et al.

    Effects of erythropoietin on glial cell development; oligodendrocyte maturation and astrocyte proliferation

    Neurosci Res

    (2002)
  • L. Vitellaro-Zuccarello et al.

    Erythropoietin-mediated preservation of the white matter in rat spinal cord injury

    Neuroscience

    (2007)
  • M.S. Brown et al.

    Association between higher cumulative doses of recombinant erythropoietin and risk for retinopathy of prematurity

    J AAPOS

    (2006)
  • R. Bierer et al.

    Erythropoietin increases reticulocyte counts and maintains hematocrit in neonates requiring surgery

    J Pediatr Surg

    (2009)
  • F.W. Quelle et al.

    Erythropoietin induces activation of Stat5 through association with specific tyrosines on the receptor that are not required for a mitogenic responses

    Mol Cell Biol

    (1996)
  • A. Anagnostou et al.

    Erythropoietin receptor mRNA expression in human endothelial cells

    Proc Natl Acad Sci USA

    (1994)
  • A. Anagnostou et al.

    Erythropoietin has a mitogenic and positive chemotactic effect on endothelial cells

    Proc Natl Acad Sci USA

    (1990)
  • X. Yu et al.

    Erythropoietin receptor signalling is required for normal brain development

    Development

    (2002)
  • M. Digicaylioglu et al.

    Erythropoietin-mediated neuroprotection involves cross-talk between Jak2 and NF-KappaB signalling caspases

    Nature

    (2001)
  • Z.Z. Chong et al.

    Erythropoietin is a novel vascular protectant through activation of Akt1 and mitochondrial modulation of cysteine proteases

    Circulation

    (2002)
  • S.E. Juul et al.

    Erythropoietin and erythropoietin receptor in the developing human central nervous system

    Pediatr Res

    (1998)
  • M. Bernaudin et al.

    Neurons and astrocytes express EPO mRNA oxygen-sensing mechanisms that involve the redox-state of the brain

    Glia

    (2000)
  • A. Kumral et al.

    Neuroprotective effect of erythropoietin on hypoxic-ischemic brain injury in neonatal rats

    Biol Neonate

    (2003)
  • H. Matsushita et al.

    Protective effect of erythropoietin in neonatal hypoxic ischemic mice

    Neuroreport

    (2003)
  • Y. Sun et al.

    Neonatal hypoxia/ischemia is associated with decreased inflammatory mediators after erythropoietin administration

    Stroke

    (2005)
  • X. Wang et al.

    The nonerythropoietic asialoerythropoietin protects against neonatal hypoxia-ischemia as potently as erythropoietin

    J Neurochem

    (2004)
  • Cited by (16)

    • Erythropoietin, erythropoiesis and beyond

      2011, Biochemical Pharmacology
      Citation Excerpt :

      At the same time, Shi et al. showed in a rabbit model that the rapid activation of potassium channels and protein kinases by EPO represents an important new mechanism for increasing cardioprotection [115]. Primary investigations on the signaling pathways involved in EPO-mediated cardioprotection demonstrated the phosphorylation and activation of JAK1/2, STAT3, STAT5a and PI3K as well as the activation of PKCɛ, RAF, MEK1/2, p42/44-MAPK and p38-MAPK [116] (Fig. 3). The cardiac inflammation and apoptosis of myocardial cells are two distinct phenomena in the deterioration of cardiac function, but both are triggered during I/R or MI.

    • The mechanisms for erythropoietin's neovascularization promotion

      2016, Journal of Nanoscience and Nanotechnology
    View all citing articles on Scopus
    View full text