Skip to main content
Log in

A region-based model framework for the rat urine concentrating mechanism

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The highly structured organization of tubules and blood vessels in the outer medulla of the mammalian kidney is believed to result in preferential interactions among tubules and vessels; such interactions may promote solute cycling and enhance urine concentrating capability. In this study, we formulate a new model framework for the urine concentrating mechanism in the outer medulla of the rat kidney. The model simulates preferential interactions among tubules and vessels by representing two concentric regions and by specifying the fractions of tubules and vessels assigned to each of the regions. The model equations are based on standard expressions for transmural transport and on solute and water conservation. Model equations, which are derived in dynamic form, are solved to obtain steady-state solutions by means of a stable and efficient numerical method, based on the semi-Lagrangian semi-implicit method and on Newton’s method. In this application, the computational cost scales as O(N 2), where N is the number of spatial subintervals along the medulla. We present representative solutions and show that the method generates approximations that are second-order accurate in space and that exhibit mass conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armsen, T. and H. W. Reinhardt (1971). Transtubular movement of urea at different degrees of water diuresis. Pflugers Arch. 326, 270–280.

    Article  Google Scholar 

  • Atherton, J. C., M. A. Hai and S. Thomas (1969). Acute effects of lysine vasopressin injection (single and continuous) on urinary composition in the conscious water diuretic rat. Pflugers Arch. 310, 281–296.

    Article  Google Scholar 

  • Atkinson, K. E. (1989). An Introduction to Numerical Analysis, 2nd edn, New York: Wiley.

    MATH  Google Scholar 

  • Bankir, L. and C. de Rouffignac (1985). Urinary concentrating ability: insights from comparative anatomy. Am. J. Physiol. Regulatory 249, R643–R666.

    Google Scholar 

  • Böttcher, W. and M. Steinhausen (1976). Microcirculation of the renal papilla of rats under control conditions and after temporary ischemia. Kidney Int. 10, S74–S80.

    Google Scholar 

  • Chandhoke, P. S. and G. M. Saidel (1981). Mathematical model of mass transport throughout the kidney: effects of nephron heterogeneity and tubular-vascular organization. Ann. Biomed. Eng. 9, 263–301.

    Article  Google Scholar 

  • de Rouffignac, C. and J. P. Bonvalet (1970). Étude chez le rat des variations du débit individuel de filtration glomérulaire des néphron superficiels et profonds en fonction de l’apport sodé. Pflugers Arch. 317, 141–156.

    Article  Google Scholar 

  • Garg, L. C., S. Mackie and C. C. Tischer (1982). Effects of low potassium diet on Na-K-ATPase in rat nephron segments. Pflugers Arch. 394, 113–117.

    Article  Google Scholar 

  • Gottschalk, C. W. (1963). Renal tubular function: lessons from micropuncture, in The Harvey Lectures, Vol. 53, New York: Academic, pp. 99–123.

    Google Scholar 

  • Hai, M. A. and S. Thomas (1969). The time-course of changes in renal tissue composition during lysine vasopressin infusion in the rat. Pflugers Arch. 310, 297–319.

    Article  Google Scholar 

  • Han, J. S., K. A. Thompson, C.-L. Chou and M. A. Knepper (1992). Experimental tests of three-dimensional model of urinary concentrating mechanism. J. Am. Soc. Nephrol. 2, 1677–1688.

    Google Scholar 

  • Horster, M. F. and H. Zink (1982). Functional differentiation of medullary collecting tubule: influence of vasopressin. Kidney Int. 22, 360–365.

    Google Scholar 

  • Imai, M. (1977). Function of the thin ascending limb of Henle of rats and hamsters perfused in vitro. Am. J. Physiol. (Renal Fluid Electrolyte Physiol. 1) 232, F201–F209.

    Google Scholar 

  • Imai, M., M. Hayashi and M. Araki (1984). Functional heterogeneity of the descending limbs of Henle’s loop. I. Internephron heterogeneity in the hamster kidney. Pflugers Arch. 402, 385–392.

    Article  Google Scholar 

  • Jamison, R. L. and W. Kriz (1982). Urinary Concentrating Mechanism: Structure and Function, New York: Oxford University Press.

    Google Scholar 

  • Katz, A. I. (1986). Distribution and function of classes of ATPases along the nephron. Kidney Int. 29, 21–31.

    Google Scholar 

  • Katz, A. I., A. Doucet and F. Morel (1979). Na-K-ATPase activity along the rabbit, rat, and mouse nephron. Am. J. Physiol. (Renal Fluid Electrolyte Physiol. 6) 237, F114–F120.

    Google Scholar 

  • Kellogg, R. B. (1987). Some singular perturbation problems in renal models. J. Math. Anal. Appl. 128, 214–240.

    Article  MATH  MathSciNet  Google Scholar 

  • Kim, Y.-H., D.-U. Kim, K.-H. Han, J.-Y. Jung, J. M. Sands, M. A. Knepper, K. M. Madsen and J. Kim (2002). Expression of urea transporters in the developing rat kidney. Am. J. Physiol. Renal Physiol. 282, F530–F540.

    Google Scholar 

  • Knepper, M. A. (1983a). Urea transport in isolated thick ascending limbs and collecting ducts from rats. Am. J. Physiol. (Renal Fluid Electrolyte Physiol. 14) 245, F634–F639.

    Google Scholar 

  • Knepper, M. A. (1983b). Urea transport in nephron segments from medullary rays of rats. Am. J. Physiol. (Renal Fluid Electrolyte Physiol. 13) 244, F622–F627.

    Google Scholar 

  • Knepper, M. A., R. A. Danielson, G. M. Saidel and R. S. Post (1977). Quantitative analysis of renal medullary anatomy in rats and rabbits. Kidney Int. 12, 313–323.

    Google Scholar 

  • Knepper, M. A., G. M. Saidel and P. J. Palatt (1976). Mathematical model of renal regulation of urea excretion. Med. Biol. Eng. 14, 408–425.

    Google Scholar 

  • Koepsell, H., W. Kriz and J. Schnermann (1972). Pattern of luminal diameter changes along the descending and ascending limbs of the loop of Henle in the inner medullary zone of the rat kidney. Z. Anat. Entwickl.-Gesch. 138, 321–328.

    Article  Google Scholar 

  • Kriz, W. (1967). Der architektonische and funktionelle Aufbau der Rattenniere. Z. Zellforsch. 82, 495–535.

    Article  Google Scholar 

  • Kriz, W. and L. Bankir (1988). A standard nomenclature for structures of the kidney. Kidney Int. 33, 1–7.

    Google Scholar 

  • Kriz, W. and B. Kaissling (2000). Structural organization of the mammalian kidney, in The Kidney: Physiology and Pathophysiology, 3rd edn, D. W. Seldin and G. Giebisch (Eds), Philadelphia: Lippincott Williams & Wilkins, pp. 587–654.

    Google Scholar 

  • Kriz, W., J. Schnermann and H. Koepsell (1972). The position of short and long loops of Henle in the rat kidney. Z. Anat. Entwickl-Gesch. 138, 301–319.

    Article  Google Scholar 

  • Layton, H. E. (1986). Distribution of Henle’s loops may enhance urine concentrating capability. Biophys. J. 49, 1033–1040.

    Article  Google Scholar 

  • Layton, H. E. (2002). Mathematical models of the mammalian urine concentrating mechanism, in Membrane Transport and Renal Physiology, The IMA Volumes in Mathematics and Its Applications 129, H. E. Layton and A. M. Weinstein (Eds), New York: Springer, pp. 233–272.

    Google Scholar 

  • Layton, H. E. and J. M. Davies (1993). Distributed solute and water reabsorption in a central core model of the renal medulla. Math. Biosci. 116, 169–196.

    Article  MATH  Google Scholar 

  • Layton, H. E., J. M. Davies, G. Casotti and E. J. Braun (2000). Mathematical model of an avian urine concentrating mechanism. Am. J. Physiol. Renal Physiol. 279, F1139–F1160.

    Google Scholar 

  • Layton, A. T. and H. E. Layton (2002a). A semi-Lagrangian semi-implicit numerical method for models of the urine concentrating mechanism. SIAM J. Sci. Comput. 23, 1528–1548.

    Article  MathSciNet  Google Scholar 

  • Layton, A. T. and H. E. Layton (2002b). A numerical method for renal tubules with abrupt changes in membrane properties. J. Math. Biol 45, 549–567.

    Article  MathSciNet  MATH  Google Scholar 

  • Layton, A. T. and H. E. Layton (2003). An efficient numerical method for distributed-loop models of the urine concentrating mechanism. Math. Biosci 181, 111–132.

    Article  MathSciNet  MATH  Google Scholar 

  • Layton, H. E. and E. B. Pitman (1994). A dynamic numerical method for models of renal tubules. Bull. Math. Biol. 58, 547–565.

    Article  Google Scholar 

  • Layton, H. E., E. B. Pitman and M. A. Knepper (1995). A dynamic numerical method for models of the urine concentrating mechanism. SIAM J. Appl. Math. 55, 1390–1418.

    Article  MATH  Google Scholar 

  • Lemley, K. V. and W. Kriz (1987). Cycles and separations: the histotopography of urinary concentrating process. Kidney Int. 31, 538–548.

    Google Scholar 

  • Lide, D. R. (ed) (2001). CRC Handbook of Chemistry and Physics, 82nd edn, Cleveland: CRC Press.

    Google Scholar 

  • Mason, J., H.-U. Gutsche, L. Moore and R. Müller-Suur (1979). The early phase of experimental acute renal failure. IV. The diluting ability of the short loops of Henle. Pflugers Arch. 379, 11–18.

    Article  Google Scholar 

  • Moore, L. C. and D. J. Marsh (1980). How descending limb of Henle’s loop permeability affects hypertonic urine formation. Am. J. Physiol. (Renal Fluid Electrolyte Physiol. 8) 239, F57–F71.

    Google Scholar 

  • Nielsen, S., T. Pallone, B. L. Smith, E. I. C. P. Agre and A. B. Maunsbach (1995). Aquaporin-1 water channels in short and long loop descending thin limbs and in descending vasa recta in rat kidney. Am. J. Physiol. (Renal Fluid Electrolyte Physiol. 8) 268, F1023–F1037.

    Google Scholar 

  • Pallone, T. L. (2000). The extraglomerular microcirculation of the kidney, in The Kidney: Physiology and Pathophysiology, 3rd edn, D. W. Seldin and G. Giebisch (Eds), Philadelphia: Lippincott Williams & Wilkins, pp. 791–821.

    Google Scholar 

  • Pallone, T. L., B. K. Kishore and S. Nielsen (1997). Evidence that aquaporin I mediates NaCl-induced water flux across rat descending vasa recta. Am. J. Physiol. (Renal Fluid Electrolyte Physiol. 41) 272, F587–F596.

    Google Scholar 

  • Pallone, T. L., J. Work, R. Myers and R. L. Jamison (1994). Transport of sodium and urea in outer medullary descending vasa recta. J. Clin. Invest. 93, 212–222.

    Article  Google Scholar 

  • Pannabecker, T. L., O. H. Brokl and W. H. Dantzler (2002). Architectural arrangement and water permeabilities of mixed-type thin limbs of Henle in the rat inner medulla. Abstract 105.5 in FASEB J. 16, A51.

    Google Scholar 

  • Pannabecker, T. L., A. Dahlmann, O. H. Brokl and W. H. Dantzler (2000). Mixed descending-and ascending-type thin limbs of Henle’s loop in mammalian renal inner medulla. Am. J. Physiol. Renal Physiol. 278, F202–F208.

    Google Scholar 

  • Patlak, C. S., D. A. Goldstein and J. F. Hoffman (1963). The flow of solute and solvent across a two-membrane system. J. Theoret. Biol. 5, 426–442.

    Article  Google Scholar 

  • Pfaller, W. (1982). Structure Function Correlation on Rat Kidney: Quantitative Correlation of Structure and Function in the Normal and Injured Rat Kidney, New York: Springer.

    Google Scholar 

  • Sands, J. M. and H. E. Layton (2000). Urine concentrating mechanism and its regulation, in The Kidney: Physiology and Pathophysiology, 3rd edn, D. W. Seldin and G. Giebisch (Eds), Philadelphia: Lippincott Williams & Wilkins, pp. 1175–1216.

    Google Scholar 

  • Sands, J. M., H. Nonoguchi and M. A. Knepper (1987). Vasopressin effects on urea and H2O transport in inner medullary collecting duct subsegments. Am. J. Physiol. (Renal Fluid Electrolyte Physiol. 22) 253, F823–F832.

    Google Scholar 

  • Sands, J. M., H. Nonoguchi and M. A. Knepper (1988). Hormone effects on NaCl permeability of rat inner medullary collecting duct. Am. J. Physiol. (Renal Fluid Electrolyte Physiol. 24) 255, F421–F428.

    Google Scholar 

  • Sasaki, S. and M. Imai (1980). Effects of vasopressin on water and NaCl transport across the in vitro perfused medullary thick ascending limb of Henle’s loop of mouse, rat, and rabbit kidneys. Pflugers Arch. 383, 215–221.

    Article  Google Scholar 

  • Schnermann, J., C.-L. Chou, T. Ma, T. Traynor, M. A. Knepper and A. S. Verkman (1998). Defective proximal tubular fluid reabsorption in transgenic aquaporin-1 null mice. Proc. Natl. Acad. Sci. USA. 95, 9660–9664.

    Article  Google Scholar 

  • Stephenson, J. L. (1972). Central core model of the renal counterflow system. Kidney Int. 2, 85–94.

    Google Scholar 

  • Stephenson, J. L. (1992). Urinary concentration and dilation: models, in Handbook of Physiology: Renal Physiology, 8, Vol. 2, E. G. Windhager (Ed.), Bethesda, MD: American Physiological Society, pp. 1349–1408.

    Google Scholar 

  • Stephenson, J. L., J. F. Jen, H. Wang and R. P. Tewarson (1995a). Convective uphill transport of NaCl from ascending thin limb of the loop of Henle. Am. J. Physiol. (Renal Fluid Electrolyte Physiol. 37) 268, F680–F692.

    Google Scholar 

  • Stephenson, J. L., H. Wang and R. P. Tewarson (1995b). Effect of vasa recta flow on concentrating ability of models of the renal inner medulla. Am. J. Physiol. (Renal Fluid Electrolyte Physiol. 37) 268, F698–F709.

    Google Scholar 

  • Stephenson, J. L., Y. Zhang, A. Eftekhari and R. Tewarson (1987). Electrolyte transport in a central core model of the renal medulla. Am. J. Physiol. (Renal Fluid Electrolyte Physiol. 22) 253, F982–F998.

    Google Scholar 

  • Tewarson, R. P., H. Wang, J. L. Stephenson and J. F. Jen (1991). Efficient solution of differential equations for kidney concentrating mechanism analysis. Appl. Math. Lett. 4, 69–72.

    Article  MATH  Google Scholar 

  • Tewarson, R. P., H. Wang, J. L. Stephenson and J. F. Jen (1993). Efficient computer algorithms for kidney modeling. Math. Model. Sci. Comput. 1, 164–171.

    MATH  Google Scholar 

  • Thomas, S. R. (1998). Cycles and separations in a model of the renal medulla. Am. J. Physiol. (Renal Physiol. 44) 275, F671–F690.

    Google Scholar 

  • Thomas, S. R. and A. S. Wexler (1995). Inner medullary external osmotic driving force in a 3-D model of the renal concentrating mechanism. Am. J. Physiol. (Renal Fluid Electrolyte Physiol. 38) 269, F159–F171.

    Google Scholar 

  • Verkman, A. S. (1999). Lessons on renal physiology from transgenic mice lacking aquaporin water channels. J. Am. Soc. Nephrol. 10, 1126–1135.

    Google Scholar 

  • Wade, J. B., A. J. Lee, J. Liu, C. A. Ecelbarger, C. Mitchell, A. D. Bradford, J. Terris, G.-H. Kim and M. A. Knepper (2000). UT-A2: a 55-kDa urea transporter in thin descending limb whose abundance is regulated by vasopressin. Am. J. Physiol. Renal Physiol. 278, F52–F62.

    Google Scholar 

  • Wang, H., J. L. Stephenson, Y.-F. Deng and R. P. Tewarson (1994a). An efficient parallel algorithm for solving n-nephron models of the renal inner medulla. Comput. Math. Appl. 28, 1–12.

    Article  Google Scholar 

  • Wang, X., A. S. Wexler and D. J. Marsh (1994b). The effect of solution non-ideality on membrane transport in three-dimensional models of the renal concentrating mechanism. Bull. Math. Biol. 56, 515–546.

    Article  MATH  Google Scholar 

  • Weast, R. C. (ed) (1974). CRC Handbook of Chemistry and Physics, 55th edn, Cleveland: CRC Press.

    Google Scholar 

  • Weinstein, A. M. (2000a). A mathematical model of the outer medullary collecting duct of the rat. Am. J. Physiol. Renal Physiol. 279, F24–F45.

    Google Scholar 

  • Weinstein, A. M. (2000b). Sodium and chloride transport: proximal nephron, in The Kidney: Physiology and Pathology, 3rd edn, D. W. Seldin and G. Giebisch (Eds), Philadelphia: Lippincott Williams & Wilkins, pp. 1287–1331.

    Google Scholar 

  • Wexler, A. S., R. E. Kalaba and D. J. Marsh (1987). Passive, one-dimensional countercurrent models do not simulate hypertonic urine formation. Am. J. Physiol. (Renal Fluid Electrolyte Physiol. 22) 253, F1020–F1030.

    Google Scholar 

  • Wexler, A. S., R. E. Kalaba and D. J. Marsh (1991a). Three-dimensional anatomy and renal concentrating mechanism. I. Modeling results. Am. J. Physiol. (Renal Fluid Electrolyte Physiol. 29) 260, F368–F383.

    Google Scholar 

  • Wexler, A. S., R. E. Kalaba and D. J. Marsh (1991b). Three-dimensional anatomy and renal concentratingmechanism. II. Sensitivity results. Am. J. Physiol. (Renal Fluid Electrolyte Physiol. 29) 260, F384–F394.

    Google Scholar 

  • Yang, B., L. Bankir, A. Gillespie, C. J. Epstein and A. S. Verkman (2002). Urea-selective concentrating defect in transgenic mice lacking urea transport UT-B. J. Biol. Chem. 277, 10633–10637.

    Google Scholar 

  • Zhang, W. and A. Edwards (2001). Transport of plasma proteins across vasa recta in the renal medulla. Am. J. Physiol. Renal Physiol. 281, F278–F492.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harold E. Layton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Layton, A.T., Layton, H.E. A region-based model framework for the rat urine concentrating mechanism. Bull. Math. Biol. 65, 859–901 (2003). https://doi.org/10.1016/S0092-8240(03)00045-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S0092-8240(03)00045-4

Keywords

Navigation