The optical transverse chromatic aberration on the fovea of the human eye

https://doi.org/10.1016/0042-6989(90)90035-JGet rights and content

Abstract

The horizontal component of optical transverse chromatic aberration (TCA) at the fovea between 486 and 656 nm is measured in a sample of 8 eyes by two novel methods, both using vernier adjustment tasks with a retinal illumination of approx. 780 td and for a pupil size of ~5.5 mm dia. Initially, in an indirect method, TCA is derived along the line of sight from chromatic parallax. Secondly, TCA is measured directly using a semi-Maxwellian view and compensating for longitudinal chromatic aberration (LCA). Both techniques are unaffected by coma or by the Stiles-Crawford effects, thus optical TCA rather than the TCA perceived in normal view is measured. On average, optical TCA is in the same direction but less than previously predicted by eye models and predictions of the optical quality of the eye in white light are modified. Factors underlying the lower average value of optical TCA and variability among subjects, especially pupil centration and foveal position, are discussed. The relationship of optical TCA to TCA perceived in normal view and to chromostereopsis is analysed. The results suggest that the optical design of the human eye is optimized to reduce the wavelength dependent phase shift in the optical transfer function, which could be produced by optical TCA.

Résum é

La composante horizontale de l'aberration chromatique transverse (A.C.T.) optique aétémesurée dans l'oeil humain au niveau fovéal (8 yeux) entre 486 et 656 nm par deux nouvelles techniques utilisant un alignement vernier. Le niveau lumineux rétinien est approximativement 780 td et le diamètre pupillaire est environ 5.5 mm. La première méthode est indirecte puisque l'A.C.T. est dérivée sur la ligne principale de viséeàpartir de la parallaxe chromatique. Dans la seconde méthode, l'A.C.T. est mesurée directement en lumière semi-dirigée alors que l'aberration chromatique longitudinale (A.C.L.) est compensée. Ni la coma, ni l'effet Stiles-Crawford n'affectent ces deux méthodes qui permettent de mesurer l'A.C.T. optique plutoˆt que celle perçue en vision normale. En moyenne, l'A.C.T. est de meˆme direction, mais moindre, que les valeurs prédites par les différents modèles d'oeil théorique, en conséquence, les prédictions de la qualitéoptique de l'oeil sont modifiées. Les facteurs tels que le centrage de la pupille et la position de la fovéa, susceptibles d'expliquer la réduction de la valeur moyenne et la variabilitéentre les sujets, font l'objet d'une discussion. On analyse la relation avec l'A.C.T. perçue en vision normale, de meˆme qu'avec la stéréoscopie des couleurs. Les résultants suggèrent que l'optique de l'oeil humain est conçue pour réduire le déphasage de la fonction de transfert optique que pourrait induire l'A.C.T.

References (46)

  • BennettA.G. et al.

    Clinical visual Optics

    (1984)
  • BourdyC.

    Shift of the Stiles-Crawford function peak with wavelength

    Journal of Optics, Paris

    (1978)
  • CampbellM.C.W.

    A wavelength dependent gradient refractive index model of the rat eye predicts chromatic aberration

  • CampbellF.W. et al.

    Optical quality of the human eye

    Journal of Physiology, London

    (1966)
  • CampbellF.W. et al.

    The effect of chromatic aberration on visual acuity

    Journal of Physiology, London

    (1967)
  • ClineD. et al.

    Dictionary of visual science

    (1980)
  • ConradyA.E.

    Applied optics and optical design

    (1957)
  • Duke-ElderS. et al.

    Ophthalmic optics and refraction

  • EinthovenW.

    Stereoscopic durch Farbendifferenz

    Albrecht von Graefes Archiv für Ophthalmologie

    (1885)
  • EnochJ.M.

    Retinal receptor orientation and photoreceptor optics

  • EnochJ.M. et al.

    An analysis of retinal receptor orientation IV. Center of the entrance pupil and the center of convergence of orientation and directional sensitivity

    Investigative Ophthalmology and Visual Science

    (1972)
  • GrahamC.H.

    Some basic terms and methods

  • GuildJ.

    Chromatic parallax and its influence on optical measurements

  • Cited by (96)

    • The role of retinotopic cues in deciphering the direction and magnitude of monocular dynamic ocular accommodation: A review

      2022, Vision Research
      Citation Excerpt :

      The magnitude of TCA measured using objective and subjective methods produced a wide range of results in the literature and ranged up to 8 min of arc (Marcos et al., 1999; Rynders, Lidkea, Chisholm, & Thibos, 1995; Simonet & Campbell, 1990; Thibos, Bradley, Still, Zhang, & Howarth, 1990). Among these two types of chromatic aberrations, the accommodative system seems largely immune to the presence of TCA (Simonet & Campbell, 1990; Stark, Lee, Kruger, Rucker, & Ying, 2002). LCA, on the other hand, could be used as an odd error cue due to its effect on the focal length changes with different wavelengths (Fig. 2) (Campbell & Westheimer, 1959; Fincham, 1951).

    • Design of eye models used in quantitative analysis of interaction between chromatic and higher-order aberrations of eye

      2014, Optics Communications
      Citation Excerpt :

      The eyeball as an optical system also possesses substantial amounts of chromatic aberrations, which the longitudinal chromatic aberration (LCA) is about 0.8 D over the visible spectrum from 474 nm to 653 nm measured with psychophysical experiments on seven subjects [1], without significant change across different individuals. Transverse chromatic aberration (TCA) is subject to certain individual differences, with typical value of approximately 0.6 arcmin [2–4]. The impact of interaction between chromatic aberration and monochromatic aberration that simultaneously exist in eyeball system on vision has become the focus of researchers׳ attention.

    • Recentration of a small-aperture corneal inlay

      2012, Journal of Cataract and Refractive Surgery
    • Achromatic axes and their linear optics

      2012, Vision Research
      Citation Excerpt :

      Translation by W. F. H. from the French.) The concept arose in Ivanoff’s work on chromatic and spherical aberration (Ivanoff, 1946a, 1946b, 1947, 1950, 1953a, 1953b, 1956a, 1956b) and inspired much valuable work (e.g. Bradley & Thibos, 1995; Bradley, Zhang, & Thibos, 1991; Howarth, 1984; Howarth & Bradley, 1986; Jóźwicki, 1965; Kruger, López-Gil, & Stark, 2001; Marcos et al., 1999; Simonet & Campbell, 1990a, 1990b; Thibos & Bradley, 1999; Thibos et al., 1990, 1992; Woods, Bradley, & Atchison, 1996) on the optics of the eye. In particular it inspired the Thibos–Bradley concept (Bradley & Thibos, 1995; Thibos & Bradley, 1999; Thibos et al., 1990) of the achromatic axis. (

    • Optics of the Human Eye: Second Edition

      2023, Optics of the Human Eye: Second Edition
    View all citing articles on Scopus
    *

    Present address:École d'Optométrie, Universitéde Montréal, CP 6128 Succ. A., Montréal, Québec, Canada H3C 3J7.

    View full text