Elsevier

Thermochimica Acta

Volume 200, 8 July 1992, Pages 427-441
Thermochimica Acta

The thermal decomposition of tetrazoles

https://doi.org/10.1016/0040-6031(92)85135-IGet rights and content

Abstract

A brief review of the literature on the thermal decomposition of chemical compounds containing a tetrazole heterocycle is given. It is shown that there are two radically different pathways of the tetrazole cycle fragmentation connected with the formation of a molecule of nitrogen or azides. The elimination of nitrogen from 2,5-disubstituted tetrazoles results in a nitrilimine. The elimination of nitrogen from 1,5-disubstituted tetrazoles leads to the formation of a nitrene. The stabilization of active intermediate products depends on the chemical properties of the substituents and the conditions under which the process is carried out, and leads to a wide spectrum of final products for the thermal decomposition of tetrazoles. Kinetic studies of the thermolysis of tetrazoles show that the mechanism of heterocycle fragmentation can vary with varying temperature. The elimination of nitrogen from tetrazoles is preceded by a high-polarity transition state.

References (89)

  • C. Guimon et al.

    Chem. Phys.

    (1989)
  • A.I. Lesnikovich et al.

    Thermochim. Acta

    (1990)
  • A.I. Lesnikovich et al.

    Thermochim. Acta

    (1989)
  • S.V. Vyazovkin et al.

    Thermochim. Acta

    (1990)
  • M.S. Gibson

    Tetrahedron

    (1962)
  • A. Könnecke et al.

    Tetrahedron Lett.

    (1978)
  • C. Wentrup

    Tetrahedron

    (1970)
  • C. Wentrup et al.

    Tetrahedron

    (1970)
  • C. Wentrup

    Tetrahedron

    (1971)
  • C. Wentrup et al.

    Chem. Phys. Lett.

    (1987)
  • S.V. Levchik et al.

    Thermochim. Acta

    (1990)
  • V.V. Nedelko et al.

    Thermochim. Acta

    (1991)
  • S.-Y. Hong et al.

    Tetrahedron

    (1968)
  • J.A. Bladin

    Berichte

    (1885)
  • J. Thiele et al.

    Ann. Chem.

    (1893)
  • Yu.V. Shurukhin et al.

    Khim. Geterotsikl. Soedin.

    (1985)
  • F.R. Benson
  • H.R. Jonassen et al.

    Appl. Spectr.

    (1967)
  • J.N. Nelson et al.

    Spectr. Lett.

    (1972)
  • S.V. Levchik, O.A. Ivashkevich, A.I. Balabanovich, A.I. Lesnikovich, P.N. Gaponik and L. Costa, Thermochim. Acta, in...
  • J.K. Elwood et al.

    J. Org. Chem.

    (1967)
  • A. Vollmar et al.

    J. Heterocycl. Chem.

    (1974)
  • W.G. Finnegan et al.

    J. Org. Chem.

    (1953)
  • R.A. Henry et al.

    J. Am. Chem. Soc.

    (1954)
  • W.L. Garbrect et al.

    J. Org. Chem.

    (1953)
  • W. Otting

    Chem. Ber.

    (1956)
  • A.P. Mazurek et al.

    J. Phys. Chem.

    (1985)
  • A. Razynska et al.

    J. Chem. Soc. Perkin Trans. 2

    (1983)
  • R. Gleiter et al.

    Helv. Chim. Acta

    (1974)
  • C. Wentrup et al.

    J. Am. Chem. Soc.

    (1984)
  • C. Wentrup et al.

    J. Am. Chem. Soc.

    (1984)
  • M.W. Baum et al.

    J. Am. Chem. Soc.

    (1987)
  • J.H. Markgraf et al.

    J. Org. Chem.

    (1964)
  • R. Huisgen et al.

    Ann. Chem.

    (1962)
  • R. Huisgen

    Angew. Chem.

    (1960)
  • H. Reimlinger

    Chem. Ind.

    (1972)
  • E. Lieber et al.

    J. Org. Chem.

    (1961)
  • S. Fischer et al.

    J. Chem. Soc. Chem. Commun.

    (1980)
  • C. Wentrup et al.

    Org. Mass Spectrom.

    (1981)
  • C. Wentrup et al.

    J. Org. Chem.

    (1978)
  • C. Wentrup et al.

    J. Org. Chem.

    (1980)
  • R. Huisgen et al.

    Chem. Ber.

    (1965)
  • M. Märky et al.

    Helv. Chim. Acta

    (1978)
  • A. Orahovas et al.

    Helv. Chim. Acta

    (1975)
  • Cited by (0)

    View full text