Elsevier

Surface Science

Volume 145, Issue 1, 2 September 1984, Pages 239-259
Surface Science

Characterization of oxidized platinum surfaces by X-ray photoelectron spectroscopy

https://doi.org/10.1016/0039-6028(84)90778-7Get rights and content

Abstract

Various adlayers were grown on the (111) surface of a platinum crystal by four different oxidizing treatments. The resulting surface phases were characterized by X-ray photoelectron spectroscopy. According to the Pt 4f and O 1s XPS spectra, treatment in 0.1 MPa O2 at 900 K yielded about two monolayers of PtO2; anodic polarization in 0.5M H2SO4 acid electrolyte at 3 V versus standard hydrogen electrode gave a thick (> 5 nm) layer of Pt(OH)4, while by polarization in 1M NaOH base electrolyte at 3 V versus Ag/AgCl reference electrode a thick film of an oxyhydroxide (approximately PtO(OH)2) was formed. Etching in boiling conc. HNO3 led to a thin layer of about 1 nm of a hydrated oxide, PtO2 · xH2O. Identification of the different surface phases was supported by comparative experiments with bulk PtO2. The thermal stability of all compounds was investigated by heating the samples in ultrahigh vacuum. They all decomposed at about 400 K. Initially, not a pure metal phase was formed, but a mixed phase containing Pt metal and oxide, which was stable over a wide temperature range. No oxygen could be detected on the surface at 1070 K by XPS or Auger spectroscopy.

References (91)

  • H.P. Bonzel et al.

    Surface Sci.

    (1973)
  • D.M. Collins et al.

    Surface Sci.

    (1976)
  • D.M. Collins et al.

    Surface Sci.

    (1977)
  • G. Brodén et al.

    Chem. Phys. Letters.

    (1980)
  • J.L. Gland et al.

    Surface Sci.

    (1980)
  • D.R. Monroe et al.

    J. Catalysis

    (1980)
  • C.T. Campbell et al.

    Surface Sci.

    (1981)
  • P.R. Norton et al.

    Surface Sci.

    (1982)
  • H. Steininger et al.

    Surface Sci.

    (1982)
  • M.A. Barteau et al.

    Surface Sci.

    (1981)
  • R. Ducros et al.

    Surface Sci.

    (1976)
  • P.T. Dawson et al.

    Surface Sci.

    (1980)
  • P.R. Norton

    J. Catalysis

    (1975)
  • J.H. Craig

    Surface Sci.

    (1981)
  • T. Matsushima et al.

    Surface Sci.

    (1977)
  • R.W. McCabe et al.

    Surface Sci.

    (1977)
  • G. Maire et al.

    Surface Sci.

    (1979)
  • M. Salmerón et al.

    Surface Sci.

    (1981)
  • H.P. Bonzel et al.

    Surface Sci.

    (1981)
  • H. Niehus et al.

    Surface Sci.

    (1980)
    H. Niehus et al.

    Surface Sci.

    (1981)
  • J. Freel

    J. Catalysis

    (1972)
  • J.E. Benson et al.

    J. Catalysis

    (1965)
  • M.A. Vannice et al.

    J. Catalysis

    (1970)
  • G.R. Wilson et al.

    J. Catalysis

    (1970)
    G.R. Wilson et al.

    J. Catalysis

    (1972)
  • R.W. McCabe et al.

    Surface Sci.

    (1976)
  • T. Wang et al.

    J. Catalysis

    (1982)
  • C.G. Vayenas et al.

    Surface Sci.

    (1982)
  • C.G. Vayenas et al.

    J. Catalysis

    (1981)
  • R.K. Nandi et al.

    J. Catalysis

    (1982)
  • B. Carrière et al.

    J. Chim. Physique

    (1974)
  • P. Légaré et al.

    Surface Sci.

    (1977)
  • C.F. Cullis et al.

    J. Catalysis

    (1983)
  • C.N. Satterfield

    Heterogeneous Catalysis in Practice

    (1980)
  • A.J. Appleby

    J. Electrochem. Soc.

    (1970)
  • C. Marie

    Compt. Rend. (Paris)

    (1907)
  • J.S. Mayell et al.

    J. Electrochem. Soc.

    (1964)
  • R. Parsons et al.

    J. Electroanal. Chem.

    (1972)
  • S. Schuldiner et al.

    Electrochim. Acta

    (1973)
  • K.J. Vetter et al.

    J. Electroanal. Chem.

    (1972)
    K.J. Vetter et al.

    J. Electroanal. Chem.

    (1972)
  • R. Thacker et al.

    J. Electroanal. Chem.

    (1971)
  • J.P. Hoare et al.

    J. Electroanal. Chem.

    (1971)
  • J.P. Hoare

    Electrochim. Acta

    (1981)
    J.P. Hoare

    Electrochim. Acta

    (1982)
  • H. Angerstein-Kozlowska et al.

    J. Electroanal. Chem.

    (1973)
  • M.E. Folquer et al.

    J. Electrochem. Soc.

    (1979)
  • T. Mahmood et al.

    J. Catalysis

    (1981)
  • Cited by (203)

    • Pt thin-film resistance temperature detector on flexible Hastelloy tapes

      2021, Vacuum
      Citation Excerpt :

      However, when the annealing temperature is further increased to 700 °C, the drift increased again, combing with the deterioration of the resistivity and TCR of Pt film. This phenomenon is related with the partial oxidation of Pt film at high temperature [22]. Therefore, the sensors on Hastelloy tape were annealed at 600 °C for 2 h before the calibration.

    View all citing articles on Scopus
    View full text