Elsevier

Analytical Biochemistry

Volume 142, Issue 2, 1 November 1984, Pages 317-328
Analytical Biochemistry

Circular dichroism analyses of membrane proteins: An examination of differential light scattering and absorption flattening effects in large membrane vesicles and membrane sheets

https://doi.org/10.1016/0003-2697(84)90471-8Get rights and content

Abstract

The circular dichroism spectra of membrane suspensions are distorted by differential light scattering and absorption flattening effects, which arise as a consequence of the large size of the membrane particles relative to the wavelength of light and the high concentration of proteins in the membranes. In this paper, the consequences of these phenomena on the protein spectra of large membrane particles are discussed, and methods for eliminating them are examined. The distortions due to differential light scattering are relatively small in membrane systems, and can be compensated for by use of a large detector acceptance angle geometry. Several methods for correcting for differential flattening, which introduces a substantial distortion, have been evaluated, and a new method, the flattening quotient approach, which produces by far the best results, is described. Since the secondary structures calculated from circular dichroism spectra are highly dependent on accurate spectral shape and magnitude, this method for correcting the spectra may find general application in circular dichroism studies of membrane proteins.

References (31)

  • R. Henderson

    J. Mol. Biol

    (1975)
  • T.J. Gresalfi et al.

    J. Biol. Chem

    (1984)
  • C.T. Chang et al.

    Anal. Biochem

    (1978)
  • S. Brahms et al.

    J. Mol. Biol

    (1980)
  • D.W. Urry

    Biochim. Biophys. Acta

    (1972)
  • D.J. Gordon et al.

    Arch. Biochem. Biophys

    (1971)
  • E. Charney et al.

    Arch. Biochem. Biophys

    (1961)
  • B.P. Dorman et al.
  • B.K. Jap et al.

    Biophys. J

    (1983)
  • M.M. Long et al.

    Biochem. Biophys. Res. Commun

    (1977)
  • D. Mao et al.

    Biochemistry

    (1984)
  • R. Henderson et al.

    Nature (London)

    (1975)
  • D.M. Engelman et al.
  • D. Oesterhelt et al.

    Nature (London)

    (1971)
  • M. Rehorek et al.

    Biochemistry

    (1979)
  • Cited by (0)

    View full text