Comptes Rendus
Electron microscopy / Microscopie électronique
Using electron beams to investigate catalytic materials
[Apports de la microscopie électronique à l'étude des matériaux catalytiques]
Comptes Rendus. Physique, Volume 15 (2014) no. 2-3, pp. 258-268.

Le microscope électronique à transmission (TEM) permet, non seulement de révéler la morphologie, mais aussi d'apporter des informations à l'échelle atomique sur les propriétés structurales, chimiques et électroniques de catalyseurs solides. Ceci en fait un outil majeur dans le développement de la catalyse hétérogène. Presque tous les matériaux catalytiques ont été étudiés par TEM afin de caractériser leur structure, ce qui aide considérablement à la recherche des relations synthèse–structure–propriétés, ainsi qu'à la production de nouveaux matériaux aux propriétés ciblées. Dans cette revue, plusieurs exemples ont été sélectionnés pour illustrer les méthodes et les résultats de l'étude des matériaux catalytiques, lorsque le faisceau d'électrons d'un TEM est utilisé comme faisceau sonde.

Electron microscopy (EM) enables us, not only to reveal the morphology, but also to provide structural, chemical and electronic information about solid catalysts at the atomic level, providing a dramatic driving force for the development of heterogeneous catalysis. Almost all catalytic materials have been studied with EM in order to obtain information about their structures, which can help us to establish the synthesis–structure–property relationships and to design catalysts with new structures and desired properties. Herein, several examples will be reviewed to illustrate the investigation of catalytic materials by using electron beams.

Publié le :
DOI : 10.1016/j.crhy.2013.11.001
Keywords: Electron microscopy, Catalyst, Chemical composition, Surface, Dynamic process, Particle shape
Mot clés : Microscopie électronique, Catalyseur, Composition chimique, Surface, Processus dynamique, Forme des particules
Bingsen Zhang 1 ; Dang Sheng Su 1, 2

1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
2 Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society, Faradayweg 4–6, 14195 Berlin, Germany
@article{CRPHYS_2014__15_2-3_258_0,
     author = {Bingsen Zhang and Dang Sheng Su},
     title = {Using electron beams to investigate catalytic materials},
     journal = {Comptes Rendus. Physique},
     pages = {258--268},
     publisher = {Elsevier},
     volume = {15},
     number = {2-3},
     year = {2014},
     doi = {10.1016/j.crhy.2013.11.001},
     language = {en},
}
TY  - JOUR
AU  - Bingsen Zhang
AU  - Dang Sheng Su
TI  - Using electron beams to investigate catalytic materials
JO  - Comptes Rendus. Physique
PY  - 2014
SP  - 258
EP  - 268
VL  - 15
IS  - 2-3
PB  - Elsevier
DO  - 10.1016/j.crhy.2013.11.001
LA  - en
ID  - CRPHYS_2014__15_2-3_258_0
ER  - 
%0 Journal Article
%A Bingsen Zhang
%A Dang Sheng Su
%T Using electron beams to investigate catalytic materials
%J Comptes Rendus. Physique
%D 2014
%P 258-268
%V 15
%N 2-3
%I Elsevier
%R 10.1016/j.crhy.2013.11.001
%G en
%F CRPHYS_2014__15_2-3_258_0
Bingsen Zhang; Dang Sheng Su. Using electron beams to investigate catalytic materials. Comptes Rendus. Physique, Volume 15 (2014) no. 2-3, pp. 258-268. doi : 10.1016/j.crhy.2013.11.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2013.11.001/

[1] R. Schlogl The role of chemistry in the energy challenge, ChemSusChem, Volume 3 (2010), pp. 209-222

[2] G.A. Somorjai; B. Chaudret; P. Serp; K. Philippot Nanomaterials in Catalysis, John Wiley & Sons, 2012

[3] G. Van Tendeloo; S. Bals; S. Van Aert; J. Verbeeck; D. Van Dyck Advanced electron microscopy for advanced materials, Adv. Mater., Volume 24 (2012), pp. 5655-5675

[4] W. Zhou; I.E. Wachs; C.J. Kiely Nanostructural and chemical characterization of supported metal oxide catalysts by aberration corrected analytical electron microscopy, Curr. Opin. Solid State Mater. Sci., Volume 16 (2012), pp. 10-22

[5] J.Y. Liu Advanced electron microscopy of metal–support interactions in supported metal catalysts, ChemCatChem, Volume 3 (2011), pp. 934-948

[6] J.M. Thomas; P.A. Midgley The merits of static and dynamic high-resolution electron microscopy (HREM) for the study of solid catalysts, ChemCatChem, Volume 2 (2010), pp. 783-798

[7] J.C. Yang; M.W. Small; R.V. Grieshaber; R.G. Nuzzo Recent developments and applications of electron microscopy to heterogeneous catalysis, Chem. Soc. Rev., Volume 41 (2012), pp. 8179-8194

[8] S.I. Sanchez; M.W. Small; S. Sivaramakrishnan; J.G. Wen; J.M. Zuo; R.G. Nuzzo Visualizing materials chemistry at atomic resolution, Anal. Chem., Volume 82 (2010), pp. 2599-2607

[9] H.L. Xin; D.A. Muller Aberration-corrected ADF-STEM depth sectioning and prospects for reliable 3D imaging in S/TEM, J. Electron Microsc., Volume 58 (2009), pp. 157-165

[10] H. Friedrich; P.E. de Jongh; A.J. Verkleij; K.P. de Jong Electron tomography for heterogeneous catalysts and related nanostructured materials, Chem. Rev., Volume 109 (2009), pp. 1613-1629

[11] J.Y. Liu Scanning transmission electron microscopy and its application to the study of nanoparticles and nanoparticle systems, J. Electron Microsc., Volume 54 (2005), pp. 251-278

[12] P.L. Gai; J.J. Calvino Electron microscopy in the catalysis of alkane oxidation, environmental control, and alternative energy sources, Palo Alto (2005), pp. 465-504

[13] J.M. Thomas; P.L. Gal Electron microscopy and the materials chemistry of solid catalysts (B.C. Gates; H. Knozinger, eds.), Advances in Catalysis, vol. 48, Elsevier Academic Press Inc., San Diego, 2004, pp. 171-227

[14] J.Y. Liu Advanced electron microscopy characterization of nanostructured heterogeneous catalysts, Microsc. Microanal., Volume 10 (2004), pp. 55-76

[15] J.M. Thomas; O. Terasaki; P.L. Gai; W.Z. Zhou; J. Gonzalez-Calbet Structural elucidation of microporous and mesoporous catalysts and molecular sieves by high-resolution electron microscopy, Acc. Chem. Res., Volume 34 (2001), pp. 583-594

[16] P.L. Gai Developments of electron microscopy methods in the study of catalysts, Curr. Opin. Solid State Mater. Sci., Volume 5 (2001), pp. 371-380

[17] S. Bernal; R.T. Baker; A. Burrows; J.J. Calvino; C.J. Kiely; C. Lopez-Cartes; J.A. Perez-Omil; J.M. Rodriguez-Izquierdo Structure of highly dispersed metals and oxides: exploring the capabilities of high-resolution electron microscopy, Surf. Interface Anal., Volume 29 (2000), pp. 411-421

[18] D.S. Su Electron tomography: from 3D statics to 4D dynamics, Angew. Chem., Int. Ed. Engl., Volume 49 (2010), pp. 9569-9571

[19] N. de Jonge; F.M. Ross Electron microscopy of specimens in liquid, Nat. Nanotechnol., Volume 6 (2011), pp. 695-704

[20] X.Z. Yu; Y. Onose; N. Kanazawa; J.H. Park; J.H. Han; Y. Matsui; N. Nagaosa; Y. Tokura Real-space observation of a two-dimensional skyrmion crystal, Nature, Volume 465 (2010), pp. 901-904

[21] L. Shao; B. Zhang; W. Zhang; S.Y. Hong; R. Schlögl; D.S. Su The role of palladium dynamics in the surface catalysis of coupling reactions, Angew. Chem., Int. Ed. Engl., Volume 52 (2013), pp. 2114-2117

[22] B. Zhang; D.S. Su Transmission electron microscopy and the science of carbon nanomaterials, Small (2013) | DOI

[23] G. Van Tendeloo; D. Van Dyck; S.J. Pennycook Handbook of Nanoscopy, Wiley, 2012

[24] D.S. Su Special issue: advanced electron microscopy for catalysis, ChemCatChem, Volume 3 (2011), pp. 919-920

[25] D.S. Su Special issue: advanced electron microscopy for catalysis, ChemCatChem, Volume 5 (2013), pp. 2543-2545

[26] J.M. Thomas; C. Ducati; R. Leary; P.A. Midgley Some turning points in the chemical electron microscopic study of heterogeneous catalysts, ChemCatChem, Volume 5 (2013), pp. 2560-2579

[27] J.M. Thomas; R. Raja The advantages and future potential of single-site heterogeneous catalysts, Top. Catal., Volume 40 (2006), pp. 3-17

[28] B.S. Zhang; Y.J. Yi; W. Zhang; C.H. Liang; D.S. Su Electron microscopy investigation of the microstructure of unsupported Ni–Mo–W sulfide, Mater. Charact., Volume 62 (2011), pp. 684-690

[29] L.D. Shao; B.S. Zhang; W. Zhang; S.Y. Hong; R. Schlogl; D.S. Su The role of palladium dynamics in the surface catalysis of coupling reactions, Angew. Chem., Int. Ed. Engl., Volume 52 (2013), pp. 2114-2117

[30] G.A. Botton; S. Lazar; C. Dwyer Elemental mapping at the atomic scale using low accelerating voltages, Ultramicroscopy, Volume 110 (2010), pp. 926-934

[31] B. Zhang; W. Zhang; L. Shao; D.S. Su Optimum energy-dispersive X-ray spectroscopy elemental mapping for advanced catalytic materials, ChemCatChem, Volume 5 (2013), pp. 2586-2590

[32] L.D. Shao; B.S. Zhang; W. Zhang; D. Teschner; F. Girgsdies; R. Schlogl; D.S. Su Improved selectivity by stabilizing and exposing active phases on supported Pd nanoparticles in acetylene-selective hydrogenation, Eur. J. Chem., Volume 18 (2012), pp. 14962-14966

[33] L.D. Li; B.S. Zhang; E. Kunkes; K. Fottinger; M. Armbruster; D.S. Su; W. Wei; R. Schlogl; M. Behrens Ga–Pd/Ga2O3 catalysts: the role of gallia polymorphs, intermetallic compounds, and pretreatment conditions on selectivity and stability in different reactions, ChemCatChem, Volume 4 (2012), pp. 1764-1775

[34] D. Wang; A. Villa; P. Spontoni; D.S. Su; L. Prati In situ formation of Au–Pd bimetallic active sites promoting the physically mixed monometallic catalysts in the liquid-phase oxidation of alcohols, Eur. J. Chem., Volume 16 (2010), pp. 10007-10013

[35] X.C. Zhao; Q. Zhang; B.S. Zhang; C.M. Chen; A.Q. Wang; T. Zhang; D.S. Su Dual-heteroatom-modified ordered mesoporous carbon: Hydrothermal functionalization, structure, and its electrochemical performance, J. Mater. Chem., Volume 22 (2012), pp. 4963-4969

[36] C. Chen; J. Zhang; B. Zhang; C. Yu; F. Peng; D. Su Revealing the enhanced catalytic activity of nitrogen-doped carbon nanotubes for oxidative dehydrogenation of propane, Chem. Commun., Volume 49 (2013), pp. 8151-8153

[37] K. Suenaga; M. Koshino Atom-by-atom spectroscopy at graphene edge, Nature, Volume 468 (2010), pp. 1088-1090

[38] C. Colliex From electron energy-loss spectroscopy to multi-dimensional and multi-signal electron microscopy, J. Electron Microsc., Volume 60 (2011), p. S161-S171

[39] S. Trasobares; M. Lopez-Haro; M. Kociak; K. March; F. de La Pena; J.A. Perez-Omil; J.J. Calvino; N.R. Lugg; A.J. D'Alfonso; L.J. Allen; C. Colliex Chemical imaging at atomic resolution as a technique to refine the local structure of nanocrystals, Angew. Chem., Int. Ed. Engl., Volume 50 (2011), pp. 868-872

[40] C.P. Ewels; A. Gloter; T. Minea; B. Bouchet-Fabre; S. Point; C. Colliex Influence of Fe/Cr on nitrogen doped carbon nanotube growth, Eur. Phys. J. Appl. Phys., Volume 42 (2008), pp. 247-250

[41] N.Y. Jin-Phillipp; C.T. Koch; P.A. van Aken Toward quantitative core-loss EFTEM tomography, Ultramicroscopy, Volume 111 (2011), pp. 1255-1261

[42] D.L. Wang; H.L.L. Xin; R. Hovden; H.S. Wang; Y.C. Yu; D.A. Muller; F.J. DiSalvo; H.D. Abruna Structurally ordered intermetallic platinum–cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts, Nat. Mater., Volume 12 (2013), pp. 81-87

[43] X.C. Zhao; Q. Zhang; B.S. Zhang; C.M. Chen; J.M. Xu; A.Q. Wang; D.S. Su; T. Zhang Decorated resol derived mesoporous carbon: highly ordered microstructure, rich boron incorporation, and excellent electrochemical capacitance, RSC Adv., Volume 3 (2013), pp. 3578-3584

[44] X. Bao; M. Muhler; B. Pettinger; R. Schlogl; G. Ertl On the nature of the active state of silver during catalytic-oxidation of methanol, Catal. Lett., Volume 22 (1993), pp. 215-225

[45] X. Bao; M. Muhler; R. Schlogl; G. Ertl Oxidative coupling of methane on silver catalysts, Catal. Lett., Volume 32 (1995), pp. 185-194

[46] D.S. Su; T. Jacob; T.W. Hansen; D. Wang; R. Schlogl; B. Freitag; S. Kujawa Surface chemistry of Ag particles: Identification of oxide species by aberration-corrected TEM and by DFT calculations, Angew. Chem., Int. Ed. Engl., Volume 47 (2008), pp. 5005-5008

[47] B.S. Zhang; D. Wang; W. Zhang; D.S. Su; R. Schlogl Structural dynamics of low-symmetry Au nanoparticles stimulated by electron irradiation, Eur. J. Chem., Volume 17 (2011), pp. 12877-12881

[48] B.S. Zhang; W. Zhang; D.S. Su Towards a more accurate particle size distribution of supported catalyst by using HAADF–STEM, ChemCatChem, Volume 3 (2011), pp. 965-968

[49] B.S. Zhang; X.J. Ni; W. Zhang; L.D. Shao; Q. Zhang; F. Girgsdies; C.H. Liang; R. Schlogl; D.S. Su Structural rearrangements of Ru nanoparticles supported on carbon nanotubes under microwave irradiation, Chem. Commun., Volume 47 (2011), pp. 10716-10718

[50] B.T. Qiao; A.Q. Wang; X.F. Yang; L.F. Allard; Z. Jiang; Y.T. Cui; J.Y. Liu; J. Li; T. Zhang Single-atom catalysis of CO oxidation using Pt1/FeOx, Nat. Chem., Volume 3 (2011), pp. 634-641

[51] B.S. Zhang; W. Zhang; D.S. Su Analysis of particle size distribution of supported catalyst by HAADF–STEM, Microsc. Anal., Volume 26 (2012), pp. 15-20

[52] K. Arve; H. Kannisto; H.H. Ingelsten; K. Eranen; M. Skoglundh; D.Y. Murzin Did chemisorption become an obsolete method with advent of TEM? Comparison of mean particle size and distribution of silver on alumina, Catal. Lett., Volume 141 (2011), pp. 665-669

[53] J.P. Tessonnier; O. Ersen; G. Weinberg; C. Pham-Huu; D.S. Su; R. Schlogl Selective deposition of metal nanoparticles inside or outside multiwalled carbon nanotubes, ACS Nano, Volume 3 (2009), pp. 2081-2089

[54] E.P.W. Ward; T.J.V. Yates; J.J. Fernandez; D.E.W. Vaughan; P.A. Midgley Three-dimensional nanoparticle distribution and local curvature of heterogeneous catalysts revealed by electron tomography, J. Phys. Chem. C, Volume 111 (2007), pp. 11501-11505

[55] J.C. Hernandez-Garrido; K. Yoshida; P.L. Gai; E.D. Boyes; C.H. Christensen; P.A. Midgley The location of gold nanoparticles on titania: A study by high resolution aberration-corrected electron microscopy and 3D electron tomography, Catal. Today, Volume 160 (2011), pp. 165-169

[56] R. Leary; P.A. Midgley; J.M. Thomas Recent advances in the application of electron tomography to materials chemistry, Acc. Chem. Res., Volume 45 (2012), pp. 1782-1791

[57] B. Goris; S. Bals; W. Van den Broek; E. Carbo-Argibay; S. Gomez-Grana; L.M. Liz-Marzan; G. Van Tendeloo Atomic-scale determination of surface facets in gold nanorods, Nat. Mater., Volume 11 (2012), pp. 930-935

[58] S. Bals; M. Casavola; M.A. van Huis; S. Van Aert; K.J. Batenburg; G. Van Tendeloo; D. Vanmaekelbergh Three-dimensional atomic imaging of colloidal core–shell nanocrystals, Nano Lett., Volume 11 (2011), pp. 3420-3424

[59] C.-C. Chen; C. Zhu; E.R. White; C.-Y. Chiu; M.C. Scott; B.C. Regan; L.D. Marks; Y. Huang; J. Miao Three-dimensional imaging of dislocations in a nanoparticle at atomic resolution, Nature, Volume 496 (2013), pp. 74-77

[60] C.M. Chen; Q. Zhang; C.H. Huang; X.C. Zhao; B.S. Zhang; Q.Q. Kong; M.Z. Wang; Y.G. Yang; R. Cai; D.S. Su Macroporous ‘bubble’ graphene film via template-directed ordered-assembly for high rate supercapacitors, Chem. Commun., Volume 48 (2012), pp. 7149-7151

[61] C.-C. Chen; C. Zhu; E.R. White; C.-Y. Chiu; M.C. Scott; B.C. Regan; L.D. Marks; Y. Huang; J. Miao Three-dimensional imaging of dislocations in a nanoparticle at atomic resolution, Nature, Volume 496 (2013), pp. 74-77

[62] M.C. Scott; C.C. Chen; M. Mecklenburg; C. Zhu; R. Xu; P. Ercius; U. Dahmen; B.C. Regan; J.W. Miao Electron tomography at 2.4-angstrom resolution, Nature, Volume 483 (2012) (444–U491)

[63] S. Van Aert; K.J. Batenburg; M.D. Rossell; R. Erni; G. Van Tendeloo Three-dimensional atomic imaging of crystalline nanoparticles, Nature, Volume 470 (2011), pp. 374-377

[64] B. Zhang; D.S. Su Electron tomography: three-dimensional imaging of real crystal structures at atomic resolution, Angew. Chem., Int. Ed. Engl., Volume 52 (2013), pp. 8504-8506

[65] K. Philippot; P. Serp Concepts in nanocatalysis, Nanomaterials in Catalysis, Wiley-VCH Verlag GmbH & Co. KGaA, 2013, pp. 1-54

[66] Z.L. Zhang; D.S. Su Behaviour of TEM metal grids during in-situ heating experiments, Ultramicroscopy, Volume 109 (2009), pp. 766-774

[67] J. Zhang; J.O. Muller; W.Q. Zheng; D. Wang; D.S. Su; R. Schlogl Individual Fe–Co alloy nanoparticles on carbon nanotubes: Structural and catalytic properties, Nano Lett., Volume 8 (2008), pp. 2738-2743

[68] S.R. Challa; A.T. Delariva; T.W. Hansen; S. Helveg; J. Sehested; P.L. Hansen; F. Garzon; A.K. Datye Relating rates of catalyst sintering to the disappearance of individual nanoparticles during Ostwald ripening, J. Am. Chem. Soc., Volume 133 (2011), pp. 20672-20675

[69] W. Zhang; B.S. Zhang; T. Wolfram; L.D. Shao; R. Schlogl; D.S. Su Probing a redox behavior of TiO2/SBA-15 supported VxOy catalyst using an electron beam in a 200 kV transmission electron microscope, J. Phys. Chem. C, Volume 115 (2011), pp. 20550-20554

[70] T.W. Chamberlain; J.C. Meyer; J. Biskupek; J. Leschner; A. Santana; N.A. Besley; E. Bichoutskaia; U. Kaiser; A.N. Khlobystov Reactions of the inner surface of carbon nanotubes and nanoprotrusion processes imaged at the atomic scale, Nat. Chem., Volume 3 (2011), pp. 732-737

[71] B. Zhang; L. Shao; W. Zhang; D.S. Su Clothing carbon nanotubes with palladium rings: constructing carbon–metal hybrid nanostructures under electron-beam irradiation, ChemCatChem, Volume 5 (2013), pp. 2581-2585

[72] S. Chenna; P.A. Crozier Operando transmission electron microscopy: a technique for detection of catalysis using electron energy-loss spectroscopy in the transmission electron microscope, ACS Catal., Volume 2 (2012), pp. 2395-2402

[73] C. Jin; K. Suenaga; S. Iijima How does a carbon nanotube grow? An in situ investigation on the cap evolution, ACS Nano, Volume 2 (2008), pp. 1275-1279

[74] P.L. Hansen; J.B. Wagner; S. Helveg; J.R. Rostrup-Nielsen; B.S. Clausen; H. Topsøe Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals, Science, Volume 295 (2002), pp. 2053-2055

[75] H. Yoshida; Y. Kuwauchi; J.R. Jinschek; K.J. Sun; S. Tanaka; M. Kohyama; S. Shimada; M. Haruta; S. Takeda Visualizing gas molecules interacting with supported nanoparticulate catalysts at reaction conditions, Science, Volume 335 (2012), pp. 317-319

[76] P.L. Gai; E.D. Boyes; S. Helveg; P.L. Hansen; S. Giorgio; C.R. Henry Atomic-resolution environmental transmission electron microscopy for probing gas–solid reactions in heterogeneous catalysis, Mater. Res. Soc. Bull., Volume 32 (2007), pp. 1044-1050

[77] O.H. Kwon; A.H. Zewail 4D electron tomography, Science, Volume 328 (2010), pp. 1668-1673

[78] A.H. Zewail Four-dimensional electron microscopy, Science, Volume 328 (2010), pp. 187-193

[79] R.M. van der Veen; O.-H. Kwon; A. Tissot; A. Hauser; A.H. Zewail Single-nanoparticle phase transitions visualized by four-dimensional electron microscopy, Nat. Chem., Volume 5 (2013), pp. 395-402

[80] A.H. Zewail 4D Electron Microscopy: Imaging in Space and Time, World Scientific, 2009

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Using electron beams to investigate carbonaceous materials

Clemens Mangler; Jannik C. Meyer

C. R. Phys (2014)


Visualising reacting single atoms under controlled conditions: Advances in atomic resolution in situ Environmental (Scanning) Transmission Electron Microscopy (E(S)TEM)

Edward D. Boyes; Pratibha L. Gai

C. R. Phys (2014)