Skip to main content
Log in

Heat transfer performance of porous titanium

  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Porous titanium fibre materials with different structural parameters were prepared by vacuum sintering method. The thickness, porosity and wire diameter of prepared materials were investigated to understand the effects of structural parameters on pool heat transmission performance of titanium fibre porous material. As a result, better heat transfer performance is obtained when overheating is less than 10 °C. In addition, when the wire diameter is smaller, the heat transfer is better. However, when superheating is above 10 °C, heat transfer performance can be improved by increasing the wire diameter. Moreover, thickness influences the superficial area of the prepared material and affects the thermal resistance when bubbles move inside the material; superficial area and thermal resistance are the two key factors that jointly impact the heat transfer in relation to the thickness of the materials. Experimental results also show that the materials of 3 mm in thickness exhibit the best performance for heat transmission. Furthermore, changes in porosity affect the nucleation site density and the resistance to bubble detachment; however, the nucleation site density and the resistance to bubble detachment conflict with each other. In summary, the titanium fibre porous material with a 50% porosity exhibits suitable heat transfer performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. H. Smith, S. Szyniszewski, J. F. Hajjar, B. W. Schafer, S. R. Arwade, J. Construct. Steel Res. 71 (2012) 1–10.

    Article  Google Scholar 

  2. C. Y. Zhao, Int. J. Heat Mass Transfer 55 (2012) 3618–3632.

    Article  Google Scholar 

  3. H. J. Zhang, Z. P. Zou, L. Qi, H. X. Liu, Procedia Eng. 27 (2012) 752–761.

    Article  Google Scholar 

  4. Y. Mahmoudi, M. Maerefat, Int. J. Therm. Sci. 50 (2011) 2386–2401.

    Article  Google Scholar 

  5. W. Pakdee, P. Rattanadecho, Appl. Therm. Eng. 26 (2006) 2316–2326.

    Article  Google Scholar 

  6. S. P. Chen, H. Y. Li, G. Q. Chen, Cryog. Supercond. 35 (2007) 298–303.

    Google Scholar 

  7. J. Y. Huang, Z. G. Qu, D. G. Li, Z. G. Xu, W. Q. Tao, CIESC Journal 62 (2011) S1, 26–30 (in Chinese).

    Google Scholar 

  8. H. Zhi, J. L. Zhu, J. Z. Wang, Q. B. Ao, J. Ma, A. J. Li, Z. G. Xu, Hot Working Technology 43 (2014) No. 18, 82–84 (in Chinese).

    Google Scholar 

  9. F. Arbelaez, S. Sett, R. L. Mahajan, in: 2000 National Heat Transfer Conference, Pittsburgh, Pennsylvania, 2000, pp. 759–767.

  10. L. T. Chen, H. W. Zhang, Y. Liu, Y. X. Li, Acta Metall. Sin. 48 (2012) 1374–1380 (in Chinese).

    Article  Google Scholar 

  11. S. Sarangi, J. A. Weibel, S. V. Garimella, Int. J. Heat Mass Transfer 81 (2015) 103–113.

    Article  Google Scholar 

  12. S. H. Liu, Z. P. Xi, H. P. Tang, X. Yang, Z. H. Zhang, Q. M. Liu, J. Iron Steel Res. Int. 21 (2014) 849–854.

    Article  Google Scholar 

  13. S. F. Liu, Q. M. Liu, H. P. Tang, X. Yang, Z. H. Zhang, Mater. Rev. 28 (2014) 122–129 (in Chinese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-feng Liu Ph.D..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Sf., Li, A., Ren, Yj. et al. Heat transfer performance of porous titanium. J. Iron Steel Res. Int. 24, 556–560 (2017). https://doi.org/10.1016/S1006-706X(17)30083-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(17)30083-3

Key words

Navigation