Skip to main content
Log in

Microstructural Evolution and Performance of In-situ Ag-Ni Composite after Solidification under Electromagnetic Stirring and Deformation

  • Metallurgy and Metal Working
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The effect of electromagnetic stirring (EMS) on microstructure and performance of Ag-8 mass% Ni composite was investigated under both solidified and deformed conditions. Without EMS, the Ag matrix formed short, thick dendrites in the ingot; whereas with EMS, dendrites were long and slim. Ni phase mainly formed particles or ribbons, distributed along boundaries between dendrite arms. Cold drawing of the solidified Ag-Ni ingots, both with and without EMS, produced high strength in-situ metal-matrix composite (MMC) consisting of Ag matrix reinforced by Ni ribbons. EMS improved the ductility of the composite, consequently enhancing its drawability and strength. EMS also increased the electrical conductivity in both solidified ingots and deformed in-situ composite wires. In both cases, hardness and tensile strength remained high. A model based on a combination of the modified linear rule of mixtures and the Hall-Petch relationship was used to rationalize the tensile strength and hardness with respect to its fabrication parameters and the microstructure of Ag-Ni in-situ composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Tsuji, H. Inada, K. Kojima, J. Mater. Sci. 27 (1992) 1179–1183.

    Article  Google Scholar 

  2. A. Kumar, K. Jayasankar, M. Debata, A. Mandal, J. Alloys Comp. 647 (2015) 1040–1047.

    Article  Google Scholar 

  3. Q. F. Luo, Y. P. Wang, B. J. Ding, IEEE Trans. Compon. Packag. Technol. 28 (2005) 785–788.

    Article  Google Scholar 

  4. N. Al-Aqeelia, M. A. Husseina, C. Suryanarayanac, Adv. Powder Technol. 26 (2015) 385–391.

    Article  Google Scholar 

  5. Y. O. Yoon, J. K. Lee, Mater. Sci. Forum 510 (2006) 874–877.

    Article  Google Scholar 

  6. S. K. Kim, Adv. Mater. Res. 47 (2008) 873–876.

    Article  Google Scholar 

  7. K. Zhang, X. F. Bian, Y. Li, C. C. Yang, H. B. Yang, Y. Zhang, J. Alloys Comp. 639 (2015) 563–570.

    Article  Google Scholar 

  8. T. X. Zheng, Y. B. Zhong, Z. S. Lei, W. L. Ren, Z. M. Ren, F. Debray, E. Beaugnon, Y. Fautrelle, J. Alloys Comp. 623 (2015) 36–41.

    Article  Google Scholar 

  9. J. He, C. Y. Xing, J. Z. Zhao, L. Zhao, J. Mater. Sci. Technol. 26 (2010) 136–140.

    Article  Google Scholar 

  10. L. Zhang, E. G. Wang, X. W. Zuo, J. C. He, Acta Metall. Sin. 44 (2008) 165–171.

    Google Scholar 

  11. W. Q. Lu, S. G. Zhang, W. Zhang, G. Kaptay, J. D. Yu, Y. N. Fu, J. G. Li, Scripta Metall. 102 (2015) 19–22.

    Article  Google Scholar 

  12. S. Yamada, K. Tsuji, K. Yamada, H. Motokawa, in: Proc. 37th Relay Conf., Nat. Assoc. Relay Manuf. Elkhart, USA, 1989, pp. 1–7.

  13. J. D. Verhoeven, W. A. Spitzig, F. A. Schmidt, C. L. Trybus, Mater. Manuf. Processes 4 (1989) 197–209.

    Article  Google Scholar 

  14. W. A. Spitzig, A. R. Pelton, F. C. Laabs, Acta Metall. 35 (1987) 2427–2442.

    Article  Google Scholar 

  15. P. D. Funkenbusch, T. H. Courtney, Acta Metall. 33 (1985) 913–922.

    Article  Google Scholar 

  16. U. Hangen, D. Raabe, Acta Metall. Mater. 43 (1995) 4075–4082.

    Article  Google Scholar 

  17. P. D. Funkenbusch, D. G. Kubisch, Scripta Metall. 18 (1984) 1099–1104.

    Article  Google Scholar 

  18. R. Morris, W. C. Winegard, J. Cryst. Growth 6 (1969) 61–66.

    Article  Google Scholar 

  19. K. Han, J. D. Embury, J. R. Sims, L. J. Campbell, H. J. Schneider-Muntau, V. Pantsyrnyi, A. Shikov, A. Nikulin, A. Vorobieva, Mater. Sci. Eng. A 267 (1999) 99–114.

    Article  Google Scholar 

  20. W. A. Spitzig, P. D. Krotz, Scripta Metall. 21 (1987) 1143–1146.

    Article  Google Scholar 

  21. Y. Li, K. T. Ramesh, Acta Mater. 46 (1998) 5633–5646.

    Article  Google Scholar 

  22. N. Chawla, K. K. Chawla, J. Mater. Sci. 41 (2006) 913–925.

    Article  Google Scholar 

  23. J. D. Embury, R. M. Fisher, Acta Metall. 14 (1966) 147–159.

    Article  Google Scholar 

  24. L. S. Robert, ASM Metals Handbook, ASM International, 1992.

  25. L. Tiana, I. Andersona, T. Riedemannb, A. Russell, Acta Mater. 77 (2014) 151–161.

    Article  Google Scholar 

  26. A. F. Mayadas, M. Shatzkes, Phys. Rev. B 1 (1970) 1382–1389.

    Article  Google Scholar 

  27. T. Vojta, I. Mertig, Phys. Rev. B 46 (1992) 15761–15766.

    Article  Google Scholar 

  28. S. Fatoumata, D. Yves, A. Antoine, J. Cryst. Growth 340 (2012) 41–46.

    Article  Google Scholar 

  29. X. J. Zhai, Y. Fu, J. Northeast. Univ. Nat. Sci. 23 (2002) 1083–1085.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to En-gang Wang.

Additional information

Foundation Item: Item Sponsored by National Natural Science Foundation of China (50901019, 51474066); Fundamental Research Funds for the Central Universities of China (N130409001, L1509004); the 111 Project (B07015); the US NSF Cooperative Agreement (DMR-0084173)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Han, K., Man, Tn. et al. Microstructural Evolution and Performance of In-situ Ag-Ni Composite after Solidification under Electromagnetic Stirring and Deformation. J. Iron Steel Res. Int. 23, 638–646 (2016). https://doi.org/10.1016/S1006-706X(16)30100-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(16)30100-5

Key words

Navigation