Skip to main content
Log in

Progress in numerical simulation of cavitating water jets

  • Review article
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

This paper reviews recent progress made toward modeling of cavitation and numerical simulation of cavitating water jets. Properties of existing cavitation models are discussed and a compressible mixture flow method for the numerical simulation of highspeed water jets accompanied by intensive cavitation is introduced. Two-phase fluids media of cavitating flow are treated as a homogeneous bubbly mixture and the mean flow is computed by solving Reynolds-Averaged Navier-Stokes (RANS) equations for compressible fluid. The intensity of cavitation is evaluated by the gas volume fraction, which is governed by the compressibility of bubble-liquid mixture corresponding to the status of mean flow field. Numerical results of cavitating water jet issuing from an orifice nozzle are presented and its applicability to intensively cavitating jets is demonstrated. However, the effect of impact pressure caused by collapsing of bubbles is neglected, and effectively coupling of the present compressible mixture flow method with the dynamics of bubbles remains to be a challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. SHIMIZU S., PENG G. Water jetting technology for LOHAS[M]. Tokyo, Japan: International Academic Printing Co. Ltd., 2009, 294.

    Google Scholar 

  2. SOYAMA H., KUSAKA T. and SAKA M. Peening by the use of cavitation impacts for the improvement of fatigue strength[J]. Journal of Materials Science Letters, 2001, 20(13): 1263–1265.

    Article  Google Scholar 

  3. SOYAMA H., TAKAKUWA O. Enhancing the aggressive strength of a cavitating jet and its practical application[ J]. Journal of Fluid Science and Technology, 2011, 6(4): 510–521.

    Article  Google Scholar 

  4. YAMAGUTI A., SHIMIZU S. Erosion due to impingement of cavitation jet[J]. Journal of Fluids Engineering, 1987, 109(4): 442–447.

    Article  Google Scholar 

  5. SOYAMA H., YANAUCHI Y. and SATO K. et al. High-speed observation of ultrahigh-speed submerged water jets[J]. Experimental Thermal and Fluid Science, 1996, 12(4): 411–416.

    Article  Google Scholar 

  6. FOLDYNA J., SITEK L. and SVEHLA B. et al. Utilization of ultrasound to enhance high-speed water jet effects[J]. Ultrasonics Sonochemistry, 2004, 11(3): 131–137.

    Article  Google Scholar 

  7. OOI K. K. Scale effects on cavitation inception in submerged water jets: A new look[J]. Journal of Fluid Mechanics, 1985, 151: 367–390.

    Article  Google Scholar 

  8. GOPALAN G., KATZ J. and KNIO O. The flow structure in the near field of jets and its effect on cavitation inception[J]. Journal of Fluid Mechanics, 1999, 398: 1–43.

    Article  Google Scholar 

  9. FRANC J. P., MICHEL J. M. Attached cavitation and the boundary layer: Experimental investigation and numerical treatment[J]. Journal of Fluid Mechanics, 1985, 154: 63–90.

    Article  Google Scholar 

  10. LEMONNIER H., ROWE A. Another approach in modeling cavitation flows[J]. Journal of Fluid Mechanics, 1988, 195: 557–580.

    Article  Google Scholar 

  11. SUSSMAN M. A second order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles[J]. Journal of Computational Physics, 2003, 187(1): 110–136.

    Article  MathSciNet  Google Scholar 

  12. YU P., CECCIO S. L. and TRYGGVASON G. The collapse of a cavitation bubble in shear flows -A numerical study[J]. Physics of Fluids, 1995, 7(11): 2608–2616.

    Article  Google Scholar 

  13. GONCALVES E., PATELLA R. F. Numerical simulation of cavitating flows with homogeneous models[J]. Computers and Fluids, 2009, 38(9): 1682–1696.

    Article  Google Scholar 

  14. SAUREL R., LEMETAYER O. A multiphase model for compressible flows with interfaces, shocks detonation waves and cavitation[J]. Journal Fluid Mechanics, 2001, 431: 239–271.

    Article  Google Scholar 

  15. YANO T., EGASHIRA R. and FUJIKAWA S. Linear analysis of dispersive waves in bubbly flows based on averaged equations[J]. Journal of Physical Society of Japan, 2006, 75(10): 104401.

    Article  Google Scholar 

  16. MATSUMOTO Y., YOSHIZAWA S. Behaviour of a bubble cluster in an ultrasound field[J]. International Journal of Numerical Methods in Fluids, 2004, 47(6): 591–601.

    MATH  Google Scholar 

  17. TAMURA Y., MATSUMOTO Y. Improvement of bubble model for cavitating flow simulations[J]. Journal of Hydrodynamics, 2009, 21(1): 41–46.

    Article  Google Scholar 

  18. DELANNOY Y., KUENY J. Two phase flow approach in unsteady cavitation modeling[C]. Cavitation and multiphase flow forum. 1990, ASME FED-Vol. 98, 153–158.

    Google Scholar 

  19. IGA Y., NOHMI M. and GOTO A. et al. Numerical study of sheet cavitation breakoff phenomenon on a cascade hydrofoil[J]. Journal of Fluids Engineering, 2003, 125(4): 643–651.

    Article  Google Scholar 

  20. KUBOTA A., KATO H. and YAMAGUTI H. A new modeling of cavitating flow: A numerical study of unsteady cavitation on a hydrofoil section[J]. Journal of Fluid Mechanics, 1992, 240: 59–96.

    Article  Google Scholar 

  21. SINGHAL A. K., ATHAVALE M. M. and LI H. et al. Mathematical basis and validation of the full cavitation model[J]. Journal of Fluids Engineering, 2002, 124(3): 617–624.

    Article  Google Scholar 

  22. KUNZ R. F., BOGER D. A. and STINEBRING D. R. et al. A preconditioned Navier-Stokes method for twophase flows with application to cavitation prediction[J]. Computers and Fluids, 2000, 29(8): 849–875.

    Article  Google Scholar 

  23. HSIAO C. T., CHAHINE G. Prediction of tip vortex cavitation inception using coupled sphericaland nonspherical bubble models and Navier-Stokes computations[ J]. Journal of Marine Science and Technology, 2004, 8(3): 99–108.

    Article  Google Scholar 

  24. SENOCAK I., SHYY W. A pressure-based method for turbulent cavitating flow computations[J]. Journal of Computational Physics, 2002, 176(2): 363–383.

    Article  Google Scholar 

  25. PENG G., EGASHIRA R. and YANO T. et al. A compressible two-phase flow bubble cavitation model for computation of cavitating flows[C]. Proceedings of the 1st International Colloquium on Dynamics, Physics and Chemistry of Bubble and Gas-Liquid Boundaries. Hokkaido, Japan, 2007.

    Google Scholar 

  26. WILCOX D. C. Turbulence modeling for CFD[M]. 2nd Edition, La Canada, California, USA: DCW Industries, Inc., 2002, 540.

    Google Scholar 

  27. DELGOSHA C. O., REBOUD J. L. and DELANNOY Y. Numerical simulation of the unsteady behaviour of cavitating flows[J]. International Journal of Numerical Methods in Fluids, 2003, 42(5): 527–548.

    MATH  Google Scholar 

  28. PENG G., SHIMIZU S. and FUJIKAWA S. Numerical simulation of cavitating water jet by a compressible mixture flow method[J]. Journal of Fluid Science and Technology, 2011, 6(4): 499–509.

    Article  Google Scholar 

  29. YABE T., WANG P.-Y. Unified numerical procedure for compressible and incompressible fluid[J]. Journal of Physical Society of Japan, 1991, 60(7): 2105–2108.

    Article  Google Scholar 

  30. VENTIKOS Y., TZABIRAS G. A numerical method for the simulation of steady and unsteady cavitating flows[J]. Computers and Fluids, 2000, 29(1): 63–88.

    Article  Google Scholar 

  31. AHUJA V., HOSANGADI A. and ARUNAJATESAN S. Simulations of cavitating flows using hybrid unstructured meshes[J]. Journal of Fluids Engineering, 2001, 123(4): 331–340.

    Article  Google Scholar 

  32. PENG G., ISHIZUKA M. and HAYAMA S. An improved CIP-CUP method for submerged water jet flow simulation[J]. JSME International Journal Series B, 2001, 44(4): 497–504.

    Article  Google Scholar 

  33. PENG G., FUJIKAWA S. and ISHIZUKA M. et al. Numerical simulation of submerged water jet by an Improved CIP-CUP method[J]. Computational Fluid Dynamics Journal, 2002, 11(1): 27–34.

    Google Scholar 

  34. PENG G., EGASHIRA R. and YANO T. et al. A pressure-based two-phase flow method for computation of bubble cavitation flows[C]. Proceedings of 5th Joint ASME/JSME Fluids Engineering Conference. San Diego, USA, 2007.

    Google Scholar 

  35. BRENNEN C. E. Cavitation and bubble dynamics[M]. New York, USA: Oxford University Press, 1995.

    MATH  Google Scholar 

  36. LI S. C. Cavitation of hydraulic machinery[M]. Singapore: World Scientific Publishing Co., 2001, 464.

    Google Scholar 

  37. MATSUMOTO Y., ALLEN J. S. and YOSHIZAWA S. et al. Medical ultrasound with microbubbles[J]. Experimental Thermal and Fluid Science, 2005, 29(3): 255–265.

    Article  Google Scholar 

  38. POPINET S., ZALESKI S. Bubble collapse near a solid boundary: A numerical study of the influence of viscosity[ J]. Journal of Fluid Mechanics, 2002, 464: 137–163.

    Article  Google Scholar 

  39. DABIRI S., SIRIGNANO W. A. and JOSEPH D. D. Interaction between a cavitation bubble and shear flow[J]. Physics of Fluids, 2010, 22(4): 042102.

    Article  Google Scholar 

  40. TAKAHIRA H., MATSUNO T. and SHUTO K. Numerical investigations of shock-bubble interactions in mercury[ J]. Fluid Dynamics Research, 2008, 40(7): 510–520.

    Article  Google Scholar 

  41. PENG G., SHIMIZU S. and TRYGGVASON G. Numerical simulation of bubble cloud cavitation by front-tracking method[C]. Proceedings of the 26th CFD Symposium. Tokyo, Japan, 2012(in Japanese).

    Google Scholar 

  42. TRYGGVASONA G., BUNNER B. and ESMAEELI A. et al. A front-tracking method for the computations of multiphase flow[J]. Journal of Computational Physics, 2001, 169(2): 708–759.

    Article  MathSciNet  Google Scholar 

  43. BREMOND N., ARORA M. and OHL C.-D. et al. Controlled multi-bubble surface cavitation[J]. Physics Review Letters, 2006, 96: 224501.

    Article  Google Scholar 

  44. ALEHOSSEIN H., QIN Z. Numerical analysis of Rayleigh-Plesset equation for cavitating water jets[J]. International Journal of Numerical Methods in Engineering, 2007, 72(7): 780–807.

    Article  MathSciNet  Google Scholar 

  45. QIN Z., BREMHORST K. and ALEHOSSEIN H. Simulation of cavitation bubbles in a convergent–divergent nozzle water jet[J]. Journal of Fluid Mechanics, 2007, 573: 1–25.

    Article  Google Scholar 

  46. YAKHOT V., ORSZAG S. A. and THANGAM S. et al. Development of turbulence models for shear flows by a double expansion technique[J]. Physics of Fluids, 1992, 4(7): 1510–1520.

    Article  MathSciNet  Google Scholar 

  47. SOU A., HOSOKAWA S. and TOMIYAMA A. Effects of cavitation in a nozzle on liquid jet atomization[J]. International Journal of Heat and Mass Transfer, 2007, 50(18): 3575–3582.

    Article  Google Scholar 

  48. NURICK W. H. Orifice cavitation and its effect on spray mixing[J]. Journal of Fluids Engineering, 1976, 98(4): 681–687.

    Article  Google Scholar 

  49. FUSTER D., COLONIUS T. Modelling bubble clusters in compressible liquids[J]. Journal of Fluid Mechanics, 2011, 688: 352–389.

    Article  MathSciNet  Google Scholar 

  50. DEEN N. G., ANNALAND M. S. and KUIPERS J. A. M. Multi-scale modeling of dispersed gas-liquid twophase flow[J]. Chemical Engineering Science, 2004, 59(8): 1853–1861.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyi Peng.

Additional information

Biography: PENG Guoyi (1964), Male, Ph. D., Professor

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, G., Shimizu, S. Progress in numerical simulation of cavitating water jets. J Hydrodyn 25, 502–509 (2013). https://doi.org/10.1016/S1001-6058(11)60389-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1001-6058(11)60389-3

Key words

Navigation