Skip to main content
Log in

Simulation of Blood Flow in Intracranial ICA-PComA Aneurysm Via Computational Fluid Dymamics Modeling

  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

In the present study, hemodynamics of the internal carotid artery-posterior communicating artery (ICA-PComA) was numerically modeled with CFD approach. The steady and pulsating blood flow in the ICA-PComA was simulated. The main concern was placed on the influence of aneurysm geometry on the local hemodynamics by changing the sac diameter and Aspect Ratio (AR) of the aneurysm. The numerical results show the significantly weakened Wall Shear Stress (WSS) and the intensified wall pressure in the aneurysm as AR is increased. Two factors, i.e., low WSS and high pressure of the aneurysm, may play important roles in the fragile change of the aneurysm and the final rupture. The distributions of Time-Averaged WSS (TAWSS), Oscillatory Shear Index (OSI) and spatial WSS Gradients (WSSG)) were determined and discussed in view of their influences on the evolution of ICA-PComA aneurysm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. HE Xu-ying, DUAN Chuan-zhi and LI Tie-lin et al. The formation of internal carotid-posterior communicating artery aneurysm[J]. Int. J. Cerebrovasc. Dis., 2007, 15(6): 460–463(in Chinese).

    Google Scholar 

  2. BURLESON A. C., TURITTO V. T. Identification of quantifiable hemodynamic factors in the assessment of cerebral aneurysm behavior. On behalf of the subcommittee on biorheology of the scientific and standardization committee of the ISTH[J]. Thromb. Haemost., 1996, 76(1): 118–123.

    Google Scholar 

  3. FOUTRAKIS G. N., YONAS H. and SCLABASSI R. J. Saccular aneurysm formation in curved and bifurcating arteries[J]. AJNR Am. J. Neuroradiol, 1999, 21: 1309–1317.

    Google Scholar 

  4. VALENCIA A. A., GUZMÁN A. M. and FINOL E. A. et al. Blood flow dynamics in saccular aneurysm models of the basilar artery[J]. J. Biomech. Eng., 2006, 128(4): 516–526.

    Article  Google Scholar 

  5. SHOJIMA M., OSHIMA M. and TAKAGI K. et al. Magnitude and role of wall shear stress on cerebral aneurysm[J]. Stroke, 2004, 35(11): 2500–2505.

    Article  Google Scholar 

  6. WEIR B., AMIDEI C. and KONGABLE G. et al. The aspect ratio (dome/neck) of ruptured and unruptured aneurysms[J]. J. Neurosurg., 2003, 99(3): 447–451.

    Article  Google Scholar 

  7. ZHAO Cong-hai, LI Miao and SHI Wan-chao et al. Hemodynamics of the turbulent flow in the cranial aneurysm[J]. Chin. J. Exp., 2006, 23(12): 1447–1449(in Chinese).

    Google Scholar 

  8. ZHANG Yu-zhong, ZHANG Xue-lin and CHANG Ren-min et al. Diameter measurements of cerebral arteries on three-dimensional time-of-flight MR angiograms[J]. Chin. J. Radiol., 2003, 37(5): 394–398(in Chinese).

    Google Scholar 

  9. AENIS M., STANCAMPIANO A. P. and WAKHLOO A. K. et al. Modeling of flow in a straight stented and nonstented side wall aneurysm mode1[J]. J. Biomech. Eng., 1997, 119(2): 206–212.

    Article  Google Scholar 

  10. PERKTOLD K., PETER R. and RESCH M. Pulsatile non-Newtonian blood flow simulation through a bifurcation with an aneurysm[J]. Biorheology, 1989, 26(6): 1011–1030.

    Article  Google Scholar 

  11. DEMPERE-MARCO L., OUBEL E. and CASTRO M. A. et al. Estimation of wall motion in intracranial aneurysms and its effects on hemodynamic patterns[J]. Lect. Notes Comp. Sci., 2006, 4191: 438–445.

    Article  Google Scholar 

  12. ZHAO Jun-wei, YIN Wen-yi and DING Guang-hong et al. Numerical simulation and analysis on the hemodynamics of an elastic aneurysm[J]. Journal of Hydrodynamics, 2008, 20(2): 216–224.

    Article  Google Scholar 

  13. HE X., KU D. N. Pulsatile flow in the human left coronary artery bifurcation: Average conditions[J]. ASME J. Biomech. Eng., 1996, 118(1): 74–82.

    Article  Google Scholar 

  14. BUCHANAN, J. R., KLEINSTREUER C. and TRUSKEY G. A. et al. Relation between non-uniform hemodynamics and sites of altered permeability and lesion growth at the rabbit aorto-celiac junction[J]. Atherosclerosis, 1999, 143(1): 27–40.

    Article  Google Scholar 

  15. MENG H., WANG Z. and HOI Y. et al. Complex hemodynamics at the apex of an arterial bifurcation induces vascular remodeling resembling cerebral aneurysm initiation[J]. Stroke, 2007, 38(6): 1924–1931.

    Article  Google Scholar 

  16. DEPAOLA N., GIMBRONE Jr. M. A. and DAVIES P. F. et al. Vascular endothelium response to [17] VALENCIA A., MORALES H. and RIVERA R. et al. Blood flow dynamics in patient-specific cerebral aneurysm models: The relationship between wall shear stress and aneurysm area index[J]. Medical Engineering and Physics, 2008, 30(3): 329–340.

    Article  Google Scholar 

  17. CEBRAL J. R., CASTRO M. A. and MILLAN D. et al. Pilot clinical investigation of aneurysm rupture using image-based computational fluid dynamics models[C]. SPIE Medical Imaging. San Diego, CA, 2005, 5746: 245–256.

    Google Scholar 

  18. MENG H., SWARTZ D. D. and WANG Z. et al. A model system for mapping vascular responses to complex hemodynamics at arterial bifurcations in vivo[J]. Neurosurgery, 2006, 59(5): 1094–1101.

    Article  Google Scholar 

  19. CEBRAL J. R., CASTRO M. A. and BURGESS J. E. et al. Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models[J]. AJNR American Journal of Neuroradiology, 2005, 26(10): 2550–2559.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-zheng Liu.

Additional information

Project supported by the Science and Technology Commission of Shanghai Municipality (Grant Nos. 08JC1411200, 064307056).

Biography: WANG Qing (1985- ), Male, Ph. D. Candidate

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Q., Wang, Wz., Fei, Zm. et al. Simulation of Blood Flow in Intracranial ICA-PComA Aneurysm Via Computational Fluid Dymamics Modeling. J Hydrodyn 21, 583–590 (2009). https://doi.org/10.1016/S1001-6058(08)60188-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1001-6058(08)60188-2

Key words

Navigation