Review
Antibody-based therapies for infectious diseases : renaissance for an abandoned arsenal?Thérapies des maladies infectieuses basées sur les anticorps : renaissance pour un arsenal délaissé?

https://doi.org/10.1016/S0020-2452(97)83532-5Get rights and content

Antibody-based therapies were largely abandoned with the advent of antimicrobial chemotherapy but now are the subject of increasing interest. Two developments contributing to a renaissance in antibody-based therapies are advances in the technology of antibody production and the difficulties involved in treating infections with conventional chemotherapy.

Les thérapies basées sur les anticorps (TBAs) ont été utilisées avec succès au début du 20e siècle mais elles ont été quasiment abandonnées après l'avènement de la chimiothérapie antimicrobienne. Les progrès dans la technologie de la production des anticorps et les difficultés entraînées par la chimiothérapie conventionnelle pour de nombreuses infections sont les deux processus qui contribuent à la renaissance des TBAs. Les cas pour lesquels les thérapies existantes ne sont pas très efficaces telles certaines infections virales, les infections opportunistes et les microorganismes résistants aux médicaments, représentent des domaines d'opportunité pour le développement des TBAs. Par rapport à la chimiothérapie antimicrobienne standard, les TBAs ont des avantages et des inconvénients importants qui sont fonctions des caractéristiques des anticorps.

Ces dernières années, un effort important a été mené pour le développement des TBAs pour le traitement des infections par le VIH et le VRS (virus respiratoire syncitial), des infections opportunistes, et du choc endotoxinique. Ces recherches ont été couronnées de succès à des degrés variables mettant en valeur à la fois l'espoir suscité par les TBAs et les difficultés rencontrées pour développer leur usage clinique. Étant donné que la plupart des TBAs sont spécifiques d'un agent pathogène, chaque cas nécessite des recherches cliniques et pré-cliniques importantes. Bien qu'il soit difficile de généraliser sans réserve sur l'emploi final, l'efficacité et le succès de la plupart des TBAs, plusieurs réussites récentes donnent des raisons d'être optimistes. En particulier, l'expérience de la TBA pour le VRS illustre comment des efforts continus peuvent aboutir à développer cette forme de thérapie dans le cas d'une ≪infection-difficile-à-traiter≫. Désormais, le domaine de la recherche sur les anticorps se trouve dans une période de renaissance qui pourrait se traduire, dans les années à venir, par de nombreuses nouvelles TBAs.

References (50)

  • LevyJ. et al.

    Passive hyperimmune plasma therapy in the treatment of acquired immunodeficiency syndrom : results of a 12-month multicenter double-blind controlled trial

    Blood

    (1994)
  • Saint-MarcT. et al.

    Beneficial effects of intravenous immunoglobulins in AIDS

    Lancet

    (1992)
  • CasadevallA. et al.

    “Serum therapy” revisited : animal models of infection and the development of passive antibody therapy

    Antimicrob. Agents Chemother.

    (1994)
  • CasadevallA. et al.

    Return to the past: the case for antibody-based therapies in infectious diseases

    Clin. Infect. Dis.

    (1995)
  • KrauseR.M. et al.

    Summary of antibody workshop: the role of humoral immunity in the treatment and prevention of emeerging and extant infectious diseases

    J. Infect. Dis.

    (1997)
  • McGoryR.W. et al.

    Improved outcome of orthotopic liver transplantation for chronic hepatitis B cirrhosis with aggressive passive immunization

    Transplantation

    (1996)
  • SladeH.B.

    Human immunoglobulins for intravenous use and hepatitis C viral transmission

    Clin. Diagn. Lab. Immunol.

    (1994)
  • YuanR. et al.

    T cells cooperate with passive antibody to modify s infection in mice infection in mice

  • GuptaA. et al.

    Restoration of suppressor T-cell functions in children with AIDS following intravenous gamma globulin treatment

    Am. J. Dis. Child.

    (1986)
  • MofensonL.M. et al.

    Effect of intravenous immunogloblulin (IVIG) on CD4+ lymphocyte decline in HIVinfected children in a clinical trial of IVIG infection prophylaxis

    J. AIDS

    (1993)
  • SchaadU.B. et al.

    Intravenous immune globulin in symptomatic paediatric human immunodeficiency virus infection

    Eur. J. Pediatr.

    (1988)
  • KarpasA. et al.

    Lytic infection by British AIDS virus and development of rapid cell test for antiviral antibodies

    Lancet

    (1985)
  • JacobsonJ.M. et al.

    Passsive immunotherapy in the treatment of advanced human immunodeficiency virus infection

    J. Infect. Dis.

    (1993)
  • VittecoqD. et al.

    Passive immunotherapy in AIDS: a double blind randomized study based on transfusions of plasma rich in anti-human immunodeficiency virus 1 antibodies versus transfusions of seronegative plasma

  • LambertJ.S. et al.

    Safety and pharmacokinetics of hyperimmune anti-human immunodeficiency virus (HIV) immunoglobulin administered to HIV-infected pregnant women and their newborns

    J. Infect. Dis.

    (1997)
  • PrinceA.M. et al.

    Prevention of HIV infection by passive immununization with HIV immunoglobulin

    AIDS Res. Hum. Retroviruses

    (1991)
  • MooreJ.P. et al.

    Primary isolates of human immunodeficieny virus type 1 are relatively resistant to neutralization by monoclonal antibodies to gp120, and their neutralization is not predicted by studies with monomeric gp120

    J. Virol.

    (1995)
  • EminiE.A. et al.

    Prevention of HIV-1 infection in chimpanzees by gp120 V3 domain-specific monoclonal antibody

    Nature (Lond.)

    (1992)
  • HinkulaJ. et al.

    Immunological and virological interactions in patients receiving passive immunotherapy with HIV-1 neutralizing monoclonal antibodies

    J. AIDS

    (1994)
  • GunthardH.F. et al.

    A Phase I/IIA clinical study with a chimeric mouse-human monoclonal antibody to the V3 loop of human immunodeficiency virus type 1 gp120

    J. Infect. Dis.

    (1994)
  • ConleyA.J. et al.

    Neutralization of primary human immunodeficiency virus type 1 isolates by the broadly reactive anti-V3 monoclonal antibody, 447-52D

    J. Virol.

    (1994)
  • Bou-HabibD.C. et al.

    Crytic nature of envelope V3 region epitopes protects primary monocytotropic human immunodeficiency virus type 1 from antibody neutralization

    J. Virol.

    (1994)
  • BenkiraneM. et al.

    The cytoplasmic tail of CD4 is required for inhibition of human immunodeficiency virus type 1 replication by antibodies that bind to the immunoglobulin CDR3-like region in domain 1 of CD4

    J. Virol.

    (1995)
  • SpectorS.A. et al.

    A controlled trial of intravenous immune globulin for the prevention of serious bacterial infections in children receiving zidovudine for advanced human immunodeficiency virus infection

    N. Engl. J. Med.

    (1994)
  • The National Institute of Child Health

    Intravenous immune globulin for the prevention of bacterial infections in children with symptomatic human immunodeficiency virus infection

    N. Engl. J. Med.

    (1991)
  • Cited by (4)

    • The mosaic puzzle of the therapeutic monoclonal antibodies and antibody fragments - A modular transition from full-length immunoglobulins to antibody mimetics

      2022, Leukemia Research Reports
      Citation Excerpt :

      A number of modifications were proposed to promote the stability of nascent proteins either in the cytoplasm or the periplasm. A number of strains were genetically modified in order to secrete the native form of the antibody fragments as membrane-bound or extracellular which facilitated their separation and then their purification[71–73]. For that purpose, a number of “optimal host cell” models were developed using prokaryotic cells (especially Escherichia coli), yeast cell strains (Saccharomyces cerevisiae, Pichia pastoris), or mammalian cell lines (Chinese Hamster Ovary cells (CHO), Human Embryonic Kidney cells (HEK), and Murine Myeloma Cells)[68,74,75].

    • Adjunctive immune therapy for fungal infections

      2001, Clinical Infectious Diseases
    View full text