Elsevier

Tectonophysics

Volume 47, Issues 1–2, 19 May 1978, Pages 131-157
Tectonophysics

Research paper
Ophiolites, seismic velocities and oceanic crustal structure

https://doi.org/10.1016/0040-1951(78)90155-5Get rights and content

Abstract

Seismic velocities have been measured to pressures of 10 kbars for 96 cores of 36 rocks collected from ophiolite complexes. Average densities (ρ), compressional wave velocities (Vp), shear wave velocities (Vs) and Poisson's ratios (σ) at 1 kbar for major rock types are as follows: AA

1.

RockρVpVsσ
(g/cm3)(km/sec)(km/sec)
Serpentinite2.535.052.450.35
Trondhjemite2.696.333.670.25
Spilite2.725.803.180.28
Metagabbro (greenschist facies)2.816.523.620.28
Metagabbro (amphibolite facies)2.996.953.730.29
Gabbro3.007.203.800.31
Pyroxenite3.247.824.250.29
Velocities in metagabbro and gabbro, the probable constituents of the lower oceanic crust, are highly dependent on mineralogy and mineral orientation. Both can be significantly anisotropic, the anisotropies originating from preferred hornblende orientation in metagabbro and olivine orientation in cumulate gabbro. Velocities in serpentinites depend upon amounts of relic olivine and pyroxene and serpentine mineralogy. Of significance, antigorite is faster than lizardite and chrysotile. Due primarily to a high quartz content, trondhjemite has a low Poisson's ratio. Velocity profiles constructed from reported petrology for the Vourinos, Troodos, Semail, Papua and Bay of Islands Massifs have much in common with seismic profiles of the oceanic crust. Major seismic discontinuities result from (1) increasing metamorphic grade with depth (the layer 2–3 boundary) and (2) a transition from gabbro, anorthosite and troctolite to dunite and peridotite (the Mohorovic̆ic̆ discontinuity).

References (35)

  • N.I. Christensen et al.

    Sea floor spreading, progressive alteration of layer 2 basalts, and associated changes in seismic velocities

    Earth Planet. Sci. Lett.

    (1972)
  • A. Nur et al.

    The effect of saturation on velocity in low porosity rocks

    Earth Planet. Sci. Lett.

    (1969)
  • H.G. AvéLallemant

    Structure of the Canyon Mountain (Oregon) ophiolite complex and its implication for seafloor spreading

    Geol. Soc. Am., Spec. Pap.

    (1976)
  • E.H. Bailey et al.

    Onland Mesozoic oceanic crust in California coast ranges

    U.S. Geol. Surv., Prof. Pap.

    (1970)
  • D.L. Barrett et al.

    The mid-Atlantic ridge near 45° N, 11, seismic velocity, density and layering of the crust

    Can. J. Earth Sci.

    (1970)
  • F. Birch

    The velocity of compressional waves in rocks to 10 kilobars, 1

    J. Geophys. Res.

    (1960)
  • F. Birch

    The velocity of compressional waves in rocks to 10 kilobars, 2

    J. Geophys. Res.

    (1961)
  • R.N. Brothers

    Flow orientations of olivine

    Am. J. Sci.

    (1959)
  • N.I. Christensen

    Compressional wave velocities in metamorphic rocks at pressures to 10 kbar

    J. Geophys. Res.

    (1965)
  • N.I. Christensen

    Elasticity of ultrabasic rocks

    J. Geophys. Res.

    (1966)
  • N.I. Christensen

    Shear wave velocities in metamorphic rocks at pressures to 10 kbar

    J. Geophys. Res.

    (1966)
  • N.I. Christensen

    Possible greenschist faciès metamorphism of the oceanic crust

    Geol. Soc. Am. Bull.

    (1970)
  • N.I. Christensen

    The abundance of serpentinites in the oceanic crust

    J. Geol.

    (1972)
  • N.I. Christensen et al.

    Structure and constitution of the lower ocean crust

    Rev. Geophys. Space Phys.

    (1975)
  • N.I. Christensen et al.

    Elasticity of mafic rocks from the mid-Atlantic ridge

    Geophys. J.

    (1970)
  • R.G. Coleman et al.

    Oceanic plagiogranite

    J. Geophys. Res.

    (1975)
  • H.L. Davies

    Periotite-gabbro-basalt complex in eastern Papua: an overthrust plate of oceanic mantle and crust

    Bull. Bur. Miner. Res. Geol. Geophys. Aust.

    (1971)
  • Cited by (0)

    View full text