Skip to main content
Log in

A novel fluorescent sensor for selective rifampicin detection based on the bio-inspired molecularly imprinted polymer-AgInS2/ZnS quantum dots

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A fluorescent sensing material based on the ternary core–shell quantum dots with outstanding optical properties and a bio-inspired molecularly imprinted polymer (MIP) as a recognition element has been prepared for selective detection of rifampicin (RFP). Firstly, AgInS2/ZnS core/shell quantum dots (ZAIS QDs) were prepared by a hydrothermal process. Then, the fluorescent sensor was prepared by coating these QDs by a dopamine-based MIP layer. The fluorescence of MIP@ZAIS QDs was quenched by RFP probably due to the photoinduced electron transfer process. The quenching constant was much higher for MIP@ZAIS QDs than the non-imprinted polymer@QDs, indicating that MIP@ZAIS QDs could selectively recognize RFP. Under the optimized conditions, the sensor had a good linear relationship at the RFP concentration range of 5.0 to 300 nM and the limit of detection was 1.25 nM. The respond time of the MIP@ZAIS QDs was 5 min, and the imprinting factor was 6.3. It also showed good recoveries ranging from 98 to 101%, for analysis of human plasma samples. The method is simple and effective for the detection of RFP and offers a practical application for the rapid analysis of human plasma samples.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L. Li, T.J. Daou, I. Texier, T.T. Kim Chi, N.Q. Liem, P. Reiss, Highly luminescent CuInS2/ZnS core/shell nanocrystals: cadmium-free quantum dots for in vivo imaging. Chem. Mater. 21, 2422–2429 (2009). https://doi.org/10.1021/cm900103b

    Article  CAS  Google Scholar 

  2. A. Delices, D. Moodelly, C. Hurot, Y. Hou, W.L. Ling, C. Saint-Pierre, D. Gasparutto, G. Nogues, P. Reiss, K. Kheng, Aqueous synthesis of DNA-functionalized near-infrared AgInS2/ZnS core/shell quantum dots. ACS Appl. Mater. Interfaces. 12, 44026–44038 (2020). https://doi.org/10.1021/acsami.0c11337

    Article  PubMed  CAS  Google Scholar 

  3. R. Muñoz, E.M. Santos, C.A. Galan-Vidal, J.M. Miranda, A. Lopez-Santamarina, J.A. Rodriguez, Ternary quantum dots in chemical analysis. Synthesis and detection mechanisms. Molecules 26, 2764 (2021). https://doi.org/10.3390/molecules26092764

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. F. Rasoulzadeh, M. Amjadi, The chemiluminescence of AgInS2 quantum dots and its application as a sensing platform for glutathione assay. J. Photochem. Photobiol. A Chem. 420, 113493 (2021). https://doi.org/10.1016/j.jphotochem.2021.113493

    Article  CAS  Google Scholar 

  5. G. Kaur, S. Tripathi, Probing photoluminescence dynamics of colloidal CdSe/ZnS core/shell nanoparticles. J. Lumin. 155, 330–337 (2014). https://doi.org/10.1016/j.jlumin.2014.06.052

    Article  CAS  Google Scholar 

  6. J. Park, C. Dvoracek, K.H. Lee, J.F. Galloway, H.C. Bhang, M.G. Pomper, P.C. Searson, CuInSe/ZnS core/shell NIR quantum dots for biomedical imaging. Small 7, 3148–3152 (2011). https://doi.org/10.1002/smll.201101558

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. D. Deng, L. Qu, Y. Gu, Near-infrared broadly emissive AgInSe 2/ZnS quantum dots for biomedical optical imaging. J. Mater. Chem. C 2, 7077–7085 (2014). https://doi.org/10.1039/C4TC01147C

    Article  CAS  Google Scholar 

  8. A. Shamirian, O. Appelbe, Q. Zhang, B. Ganesh, S.J. Kron, P.T. Snee, A toolkit for bioimaging using near-infrared AgInS 2/ZnS quantum dots. J. Mater. Chem. B 3, 8188–8196 (2015). https://doi.org/10.1039/C5TB00247H

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. X. An, Y. Zhang, J. Wang, D.-M. Kong, X.-W. He, L. Chen, Y. Zhang, The preparation of CuInS2-ZnS-glutathione quantum dots and their application on the sensitive determination of cytochrome c and imaging of HeLa cells. ACS Omega 6, 17501–17509 (2021). https://doi.org/10.1021/acsomega.1c01983

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. X. Wang, S. Yu, W. Liu, L. Fu, Y. Wang, J. Li, L. Chen, Molecular imprinting based hybrid ratiometric fluorescence sensor for the visual determination of bovine hemoglobin. Acs Sensors 3, 378–385 (2018). https://doi.org/10.1021/acssensors.7b00804

    Article  PubMed  CAS  Google Scholar 

  11. J. Yu, X. Wang, Q. Kang, J. Li, D. Shen, L. Chen, One-pot synthesis of a quantum dot-based molecular imprinting nanosensor for highly selective and sensitive fluorescence detection of 4-nitrophenol in environmental waters, environmental science. NANO 4, 493–502 (2017). https://doi.org/10.1039/C6EN00395H

    Article  CAS  Google Scholar 

  12. N. Nawaz, N.K.A. Bakar, H.N.M.E. Mahmud, N.S. Jamaludin, Molecularly imprinted polymers-based DNA biosensors. Anal. Biochem. 630, 114328 (2021). https://doi.org/10.1016/j.ab.2021.114328

    Article  PubMed  CAS  Google Scholar 

  13. C. Dong, H. Shi, Y. Han, Y. Yang, R. Wang, J. Men, Molecularly imprinted polymers by the surface imprinting technique. Eur. Polymer J. 145, 110231 (2021). https://doi.org/10.1016/j.eurpolymj.2020.110231

    Article  CAS  Google Scholar 

  14. C.I. Lin, A.K. Joseph, C.K. Chang, Y. Der Lee, Molecularly imprinted polymeric film on semiconductor nanoparticles: analyte detection by quantum dot photoluminescence. J. Chromatogr. A 1027, 259–262 (2004). https://doi.org/10.1016/j.chroma.2003.10.037

    Article  PubMed  CAS  Google Scholar 

  15. Y. Saylan, F. Yilmaz, E. Özgür, A. Derazshamshir, H. Yavuz, A. Denizli, Molecular imprinting of macromolecules for sensor applications. Sensors 17, 898 (2017). https://doi.org/10.3390/s17040898

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  16. Z. Zhang, J. Li, X. Wang, D. Shen, L. Chen, Quantum dots based mesoporous structured imprinting microspheres for the sensitive fluorescent detection of phycocyanin. ACS Appl. Mater. Interfaces 7, 9118–27 (2015). https://doi.org/10.1021/acsami.5b00908

    Article  PubMed  CAS  Google Scholar 

  17. W. Li, Y. Sun, C. Yang, X. Yan, H. Guo, G. Fu, Fabrication of surface protein-imprinted nanoparticles using a metal chelating monomer via aqueous precipitation polymerization. ACS Appl. Mater. Interfaces. 7, 27188–27196 (2015). https://doi.org/10.1021/acsami.5b07946

    Article  PubMed  CAS  Google Scholar 

  18. D.-Y. Li, X.-M. Zhang, Y.-J. Yan, X.-W. He, W.-Y. Li, Y.-K. Zhang, Thermo-sensitive imprinted polymer embedded carbon dots using epitope approach. Biosens. Bioelectron. 79, 187–192 (2016). https://doi.org/10.1016/j.bios.2015.12.016

    Article  PubMed  CAS  Google Scholar 

  19. L. Li, Y. Lu, Z. Bie, H.Y. Chen, Z. Liu, Photolithographic boronate affinity molecular imprinting: a general and facile approach for glycoprotein imprinting. Angew. Chem. 125, 7599–7602 (2013). https://doi.org/10.1002/ange.201207950

    Article  ADS  Google Scholar 

  20. S. Wang, J. Ye, Z. Bie, Z. Liu, Affinity-tunable specific recognition of glycoproteins via boronate affinity-based controllable oriented surface imprinting. Chem. Sci. 5, 1135–1140 (2014). https://doi.org/10.1039/C3SC52986J

    Article  CAS  Google Scholar 

  21. G. Sharma, B. Kandasubramanian, Molecularly imprinted polymers for selective recognition and extraction of heavy metal ions and toxic dyes. J. Chem. Eng. Data 65, 396–418 (2020). https://doi.org/10.1021/acs.jced.9b00953

    Article  CAS  Google Scholar 

  22. M. Jia, L. Qin, X.-W. He, W.-Y. Li, Preparation and application of lysozyme imprinted monolithic column with dopamine as the functional monomer. J. Mater. Chem. 22, 707–713 (2012). https://doi.org/10.1039/C1JM13134F

    Article  CAS  Google Scholar 

  23. V.K. Thakur, J. Yan, M.-F. Lin, C. Zhi, D. Golberg, Y. Bando, R. Sim, P.S. Lee, Novel polymer nanocomposites from bioinspired green aqueous functionalization of BNNTs. Polym. Chem. 3, 962–969 (2012). https://doi.org/10.1039/C2PY00612J

    Article  CAS  Google Scholar 

  24. D. Lemus, A. Martin, E. Montoro, F. Portaels, J.C. Palomino, Rapid alternative methods for detection of rifampicin resistance in Mycobacterium tuberculosis. J. Antimicrob. Chemother. 54, 130–133 (2004). https://doi.org/10.1093/jac/dkh320

    Article  PubMed  CAS  Google Scholar 

  25. K. Chatterjee, C.W. Kuo, A. Chen, P. Chen, Detection of residual rifampicin in urine via fluorescence quenching of gold nanoclusters on paper. J. Nanobiotechnol. 13, 1–9 (2015). https://doi.org/10.1186/s12951-015-0105-5

    Article  CAS  Google Scholar 

  26. Y. Cui, A. Su, J. Feng, W. Dong, J. Li, H. Wang, X. Ni, Y. Jiang, Development of silica molecularly imprinted polymer on carbon dots as a fluorescence probe for selective and sensitive determination of cetirizine in saliva and urine. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 264, 120293 (2022). https://doi.org/10.1016/j.saa.2021.120293

    Article  CAS  Google Scholar 

  27. X.-M. Wu, J.-H. Zhang, Z.-S. Feng, W.-X. Chen, F. Zhang, Y. Li, An ultra-sensitive “turn-off” fluorescent sensor for the trace detection of rifampicin based on glutathione-stabilized copper nanoclusters. Analyst 145, 1227–1235 (2020). https://doi.org/10.1039/C9AN01994D

    Article  ADS  PubMed  CAS  Google Scholar 

  28. Z. Han, Y. Long, S. Pan, H. Liu, J. Yang, X. Hu, Efficient one-pot synthesis of carbon dots as a fluorescent probe for the selective and sensitive detection of rifampicin based on the inner filter effect. Anal. Methods 10, 4085–4093 (2018). https://doi.org/10.1039/C8AY01385C

    Article  CAS  Google Scholar 

  29. R. Jalili, M. Amjadi, Bio-inspired molecularly imprinted polymer–green emitting carbon dot composite for selective and sensitive detection of 3-nitrotyrosine as a biomarker. Sens. Actuators, B Chem. 255, 1072–1078 (2018). https://doi.org/10.1016/j.snb.2017.08.145

    Article  CAS  Google Scholar 

  30. X. Kang, L. Huang, Y. Yang, D. Pan, Scaling up the aqueous synthesis of visible light emitting multinary AgInS2/ZnS core/shell quantum dots. J. Phys. Chem. C 119, 7933–7940 (2015). https://doi.org/10.1021/acs.jpcc.5b00413

    Article  CAS  Google Scholar 

  31. B. Feng, Z. Xu, L. Gai, Water-soluble organic polymer/silica composite nanofilms with improved fluorescence quantum yield. J. Lumin. 211, 347–354 (2019). https://doi.org/10.1016/j.jlumin.2019.03.066

    Article  CAS  Google Scholar 

  32. V. Anbazhagan, R. Renganathan, Study on the binding of 2,3-diazabicyclo[2.2.2]oct-2-ene with bovine serum albumin by fluorescence spectroscopy. J. Lumin. 128, 1454–1458 (2008). https://doi.org/10.1016/j.jlumin.2008.02.004

    Article  CAS  Google Scholar 

  33. C.-X. Liu, J. Zhao, R.-R. Zhang, Z.-M. Zhang, J.-J. Xu, A.-L. Sun, J. Chen, X.-Z. Shi, Development and application of fluorescence sensor and test strip based on molecularly imprinted quantum dots for the selective and sensitive detection of propanil in fish and seawater samples. J. Hazard. Mater. 389, 121884 (2020). https://doi.org/10.1016/j.jhazmat.2019.121884

    Article  PubMed  CAS  Google Scholar 

  34. B.D. Bozorg, A. Goodarzi, F. Fahimi, P. Tabarsi, N. Shahsavari, F. Kobarfard, Dastan, Simultaneous determination of isoniazid, pyrazinamide and rifampin in human plasma by high-performance liquid chromatography and UV detection. Iran. J. Pharm. Res. IJPR. 18, 1735 (2019). https://doi.org/10.22037/ijpr.2019.1100849

    Article  CAS  Google Scholar 

  35. A. Srivastava, D. Waterhouse, A. Ardrey, S.A. Ward, Quantification of rifampicin in human plasma and cerebrospinal fluid by a highly sensitive and rapid liquid chromatographic–tandem mass spectrometric method. J. Pharm. Biomed. Anal. 70, 523–528 (2012). https://doi.org/10.1016/j.jpba.2012.05.028

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. A. Allanson, M. Cotton, J. Tettey, A. Boyter, Determination of rifampicin in human plasma and blood spots by high performance liquid chromatography with UV detection: a potential method for therapeutic drug monitoring. J. Pharm. Biomed. Anal. 44, 963–969 (2007). https://doi.org/10.1016/j.jpba.2007.04.007

    Article  PubMed  CAS  Google Scholar 

  37. Y. Ma, B.T. Zhang, L.X. Zhao, G.S. Guo, J.M. Lin, Determination of rifampicin by peroxomonosulfate-cobalt (II) chemiluminescence system. Chin. J. Chem. 26, 905–10 (2008). https://doi.org/10.1002/cjoc.200890166

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzaneh Rasoulzadeh.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 115 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasoulzadeh, F., Amjadi, M. A novel fluorescent sensor for selective rifampicin detection based on the bio-inspired molecularly imprinted polymer-AgInS2/ZnS quantum dots. ANAL. SCI. (2024). https://doi.org/10.1007/s44211-024-00512-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s44211-024-00512-y

Keywords

Navigation