Skip to main content
Log in

Dispersive liquid–liquid microextraction coupled with microfluidic paper-based analytical device for the determination of organophosphate and carbamate pesticides in the water sample

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A microfluidic paper-based analytical device (µ-PAD) is a promising new technology platform for the development of extremely low-cost sensing devices. However, it has low sensitivity that might not enable to measure maximum allowable concentration of various pollutants in the environment. In this study, a dispersive liquid–liquid microextraction (DLLME) was developed as a preconcentration method to enhance the sensitivity of the µ-PAD for trace analysis of selected pesticides. Four critical parameters (volume of n-hexane and acetone, extraction time, NaCl amount) that affect the efficiency of DLLME have been optimized using response surface methodology. An acceptable mean recovery of 79–97% and 83–93% was observed at 1 µg L−1 and 5 µg L−1 fortification level, respectively, with very good repeatability (2.2–6.01% RSD) and reproducibility (5.60–10.41% RSD). Very high enrichment factors ranging from 317 to 1471 were obtained. The limits of detection for the studied analytes were in the range of 0.18–0.41 µg L−1 which is much lower than the WHO limits of 5–50 µg L−1 for similar category of analytes. Therefore, by coupling DLLME with µ-PAD, a sensitivity that allows to detect environmental threat and also that surpassed most of the previous reports have been achieved in this study. This implies that the preconcentration step has a paramount contribution to address the sensitivity problem associated with µ-PAD.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. X. Weng, S. Neethirajan, Trends Food Sci. Technol. 65, 10 (2017)

    Article  CAS  Google Scholar 

  2. D. Nagaraju, S.-D. Huang, J. Chromatogr. A 1161, 87 (2007)

    Article  Google Scholar 

  3. J. Akinneye, C. Adedire, S. Arannilewa, Afr. J. Biotechnol. 5, 2515 (2006)

    Google Scholar 

  4. Y. Wang, J. You, R. Ren, Y. Xiao, S. Gao, H. Zhang, A. Yu, J. Chromatogr. A 1217, 4241 (2010)

    Article  CAS  PubMed  Google Scholar 

  5. L.M. Ravelo-Pérez, J. Hernández-Borges, A.V. Herrera-Herrera, M.Á. Rodríguez-Delgado, Anal. Bioanal. Chem. 395, 2387 (2009)

    Article  PubMed  Google Scholar 

  6. C.S. Pundir, N. Chauhan, Anal. Biochem. 429, 19 (2012)

    Article  CAS  PubMed  Google Scholar 

  7. D. Hamilton, A. Ambrus, R. Dieterle, A. Felsot, C. Harris, P. Holland, A. Katayama, N. Kurihara, J. Linders, J. Unsworth, Pure Appl. Chem. 75, 1123 (2003)

    Article  CAS  Google Scholar 

  8. M. Saraji, M.K. Boroujeni, Anal. Bioanal. Chem. 406, 2027 (2014)

    Article  CAS  PubMed  Google Scholar 

  9. M. Tobiszewski, A. Mechlińska, J. Namieśnik, Chem. Soc. Rev. 39, 2869 (2010)

    Article  CAS  PubMed  Google Scholar 

  10. Y. Xia, J. Si, Z. Li, Biosens. Bioelectron. 77, 774 (2016)

    Article  CAS  PubMed  Google Scholar 

  11. A.W. Martinez, S.T. Phillips, M.J. Butte, G.M. Whitesides, Angew. Chem. Int. Ed. 46, 1318 (2007)

    Article  CAS  Google Scholar 

  12. A. Quigley, W. Cummins, D. Connolly, J. Chem. 2016, 1 (2016)

    Article  Google Scholar 

  13. M.W. Kujawski, E. Pinteaux, J. Namieśnik, Eur. Food Res. Technol. 234, 223 (2012)

    Article  CAS  Google Scholar 

  14. V. Sharifi, A. Abbasi, A. Nosrati, J. Food Drug Anal. 24, 264 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. J. Zhang, Z. Liang, S. Li, Y. Li, B. Peng, W. Zhou, H. Gao, Talanta 98, 145 (2012)

    Article  CAS  PubMed  Google Scholar 

  16. V. Muckoya, P. Nomngongo, J. Ngila, Int. J. Environ. Sci. Technol. 17, 2325 (2020)

    Article  CAS  Google Scholar 

  17. S. Khodadoust, M. Hadjmohammadi, Anal. Chim. Acta 699, 113 (2011)

    Article  CAS  PubMed  Google Scholar 

  18. M.A. Farajzadeh, M. Bahram, M.R. Vardast, M. Bamorowat, Microchim. Acta 172, 465 (2011)

    Article  CAS  Google Scholar 

  19. R. Sousa, V. Homem, J.L. Moreira, L.M. Madeira, A. Alves, Anal. Methods 5, 2736 (2013)

    Article  CAS  Google Scholar 

  20. Y. Wang, X. Miao, H. Wei, D. Liu, G. Xia, X. Yang, Food Anal. Methods 9, 2133 (2016)

    Article  Google Scholar 

  21. A. Carro, S. Fernández, I. Racamonde, D. García-Rodríguez, P. González, R. Lorenzo, J. Chromatogr. A 1253, 134 (2012)

    Article  CAS  PubMed  Google Scholar 

  22. M.L.R. del Castillo, M. Rodríguez-Valenciano, G. Flores, G.P. Blanch, LWT-Food Sci. Technol. 99, 283 (2019)

    Article  Google Scholar 

  23. K. Seebunrueng, Y. Santaladchaiyakit, S. Srijaranai, Chemosphere 103, 51 (2014)

    Article  CAS  PubMed  Google Scholar 

  24. J. Cacho, N. Campillo, P. Viñas, M. Hernández-Córdoba, J. Chromatogr. A 1559, 95 (2018)

    Article  CAS  PubMed  Google Scholar 

  25. Z. Yang, Y. Liu, D. Liu, Z. Zhou, J. Chromatogr. Sci. 50, 15 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  26. M. E. Badawy, A. F. El-Aswad. Int. J. Anal. Chem. 2014, 1 (2014)

    Article  Google Scholar 

  27. K. Sankar, D. Lenisha, G. Janaki, J. Juliana, R.S. Kumar, M.C. Selvi, G. Srinivasan, Talanta 120408, 208 (2020)

    Google Scholar 

  28. H.J. Kim, Y. Kim, S.J. Park, C. Kwon, H. Noh, BioChip J. 12, 326 (2018)

    Article  CAS  Google Scholar 

  29. M. Kavruk, V. C. Özalp, H. A. Öktem, J. Anal. Methods Chem. 2013, 1 (2013).

    Article  Google Scholar 

  30. A. Apilux, C. Isarankura-Na-Ayudhya, T. Tantimongcolwat, V. Prachayasittikul, EXCLI J. 14, 307 (2015)

    PubMed  PubMed Central  Google Scholar 

  31. M.D. Fernández-Ramos, A. Ogunneye, N. Babarinde, M. Erenas, L.F. Capitán-Vallvey, Talanta 121108, 218 (2020)

    Google Scholar 

  32. L. Jin, Z. Hao, Q. Zheng, H. Chen, L. Zhu, C. Wang, X. Liu, C. Lu, Anal. Chim. Acta 1100, 215 (2020)

    Article  CAS  PubMed  Google Scholar 

  33. E. Carrilho, A.W. Martinez, G.M. Whitesides, Anal. Chem. 81, 7091 (2009)

    Article  CAS  PubMed  Google Scholar 

  34. M. Rezaee, Y. Assadi, M.-R.M. Hosseini, E. Aghaee, F. Ahmadi, S. Berijani, J. Chromatogr. A 1116, 1 (2006)

    Article  CAS  PubMed  Google Scholar 

  35. S. Berijani, Y. Assadi, M. Anbia, M.-R.M. Hosseini, E. Aghaee, J. Chromatogr. A 1123, 1 (2006)

    Article  CAS  PubMed  Google Scholar 

  36. A. Shrivastava, V.B. Gupta, Chron. Young Sci. 2, 21 (2011)

    Article  Google Scholar 

  37. J. Peris-Vicente, S. Carda-Broch, J. Esteve-Romero, M. Rambla-Alegre, D. Bose, B. Beltrán-Martinavarro, S. Marco-Peiró, A. Martinavarro-Domínguez, E. Ochoa-Aranda, M. Chin-Chen, Bioanalysis 5, 481 (2013)

    Article  CAS  PubMed  Google Scholar 

  38. Y. Xia, M. Cheng, F. Guo, X. Wang, J. Cheng, Anal. Chim. Acta 724, 47 (2012)

    Article  CAS  PubMed  Google Scholar 

  39. C. Jia, X. Zhu, L. Chen, M. He, P. Yu, E. Zhao, J. Sep. Sci. 33, 244 (2010)

    Article  CAS  PubMed  Google Scholar 

  40. Y. Cai, Y.E. Cai, Y. Shi, J. Liu, S. Mou, Y. Lu, Microchim. Acta 157, 73 (2007)

    Article  CAS  Google Scholar 

  41. Y. Wen, J. Li, F. Yang, W. Zhang, W. Li, C. Liao, L. Chen, Talanta 106, 119 (2013)

    Article  CAS  PubMed  Google Scholar 

  42. M.A. Farajzadeh, L. Goushjuii, D. Djozan, J.K. Mohammadi, J. Sep. Sci. 35, 1027 (2012)

    Article  CAS  PubMed  Google Scholar 

  43. V. Camel, TrAC Trends Anal. Chem. 19, 229 (2000)

    Article  CAS  Google Scholar 

  44. C.S. Eskilsson, E. Björklund, J. Chromatogr. A 902, 227 (2000)

    Article  CAS  PubMed  Google Scholar 

  45. T. Tolcha, K. Gomoro, N. Megersa, Bull. Chem. Soc. Ethiop. 35, 1 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge thank Addis Ababa University for financial support through a thematic research project, entitled “Developing Innovative Microfluidic Paper-Based Analytical Devices (µ-PADs): Viable solution for Environmental Monitoring in Ethiopia”. Sheleme also acknowledges North Shewa Zone Administration (Oromia) for sponsoring his Ph.D. study.

Funding

This study was funded by Addis Ababa University (VPRTT/PY-021/2018/10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Hussen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1024 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beshana, S., Hussen, A., Leta, S. et al. Dispersive liquid–liquid microextraction coupled with microfluidic paper-based analytical device for the determination of organophosphate and carbamate pesticides in the water sample. ANAL. SCI. 38, 1359–1367 (2022). https://doi.org/10.1007/s44211-022-00167-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-022-00167-7

Keywords

Navigation