Skip to main content
Log in

An assessment of mass casualty triage systems using the Alberta trauma registry

  • Original Research
  • Published:
Canadian Journal of Emergency Medicine Aims and scope Submit manuscript

Abstract

Objective

Triage is the process of identifying patients with both the greatest clinical need and the greatest likelihood of benefit in the setting of limited clinical resources. The primary objective of this study was to assess the ability of formal mass casualty incident triage tools to identify patients requiring urgent lifesaving interventions.

Methods

Data from the Alberta Trauma Registry (ATR) was used to assess seven triage tools: START, JumpSTART, SALT, RAMP, MPTT, BCD and MITT. Clinical data captured in the ATR was used to determine which triage category each of the seven tools would have applied to each patient. These categorizations were compared to a reference standard definition based on the patients’ need for specific urgent lifesaving interventions.

Results

Of the 9448 records that were captured 8652 were included in our analysis. The most sensitive triage tool was MPTT, which demonstrated a sensitivity of 0.76 (0.75, 0.78). Four of the seven triage tools evaluated had sensitivities below 0.45. JumpSTART had the lowest sensitivity and the highest under-triage rate for pediatric patients. All the triage tools evaluated had a moderate to high positive predictive value (> 0.67) for patients who had experienced penetrating trauma.

Conclusions

There was a wide range in the sensitivity of triage tools to identify patients requiring urgent lifesaving interventions. MPTT, BCD and MITT were the most sensitive triage tools assessed. All of the triage tools assessed should be employed with caution during mass casualty incidents as they may fail to identify a large proportion of patients requiring urgent lifesaving interventions.

Abstrait

Objectifs

Le triage est le processus qui consiste à identifier les patients qui ont à la fois les besoins cliniques les plus importants et les avantages les plus probables dans le contexte de ressources cliniques limitées. Le principal objectif de cette étude était d’évaluer la capacité des outils formels de triage des incidents impliquant des blessés de masse à identifier les patients nécessitant des interventions urgentes de sauvetage.

Méthodes

Les données du Alberta Trauma Registry (ATR) ont été utilisées pour évaluer sept outils de triage : START, JumpSTART, SALT, RAMP, MPTT, BCD et MITT. Les données cliniques saisies dans l’AR ont servi à déterminer la catégorie de triage que chacun des sept outils aurait appliquée à chaque patient. Ces catégories ont été comparées à une définition standard de référence fondée sur le besoin des patients d’interventions de sauvetage urgentes.

Résultats

Sur les 9448 enregistrements saisis, 8652 ont été inclus dans notre analyse. L’outil de triage le plus sensible était le TPMD, qui présentait une sensibilité de 0,76 (0,75, 0,78). Quatre des sept outils de triage évalués présentaient une sensibilité inférieure à 0,45. JumpSTART avait la sensibilité la plus faible et le taux de sous-triage le plus élevé chez les patients pédiatriques. Tous les outils de triage évalués avaient une valeur prédictive positive modérée à élevée (>0,67) pour les patients qui avaient subi un traumatisme pénétrant.

Conclusion

La sensibilité des outils de triage pour identifier les patients nécessitant des interventions de sauvetage urgentes variait grandement. Les outils de triage les plus sensibles ont été le TCPR, le BCD et le MITT. Tous les outils de triage évalués doivent être utilisés avec prudence lors d’incidents impliquant des pertes massives, car ils peuvent ne pas identifier une grande proportion de patients nécessitant des interventions de sauvetage urgentes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request, subject to the conditions of the authors' Data Disclosure Approval from Alberta Health Services.

References

  1. U.S. Department of Health & Human Services. START Adult Triage Algorithm [Internet]. Washington DC: Chemical Hazards Emergency Medical Management; 1983 [updated 2022 Nov 16; cited 2022 Dec 4]. Available from: https://chemm.hhs.gov/startadult.htm

  2. Romig LE. Pediatric triage. A system to JumpSTART your triage of young patients at MCIs. JEMS. 2002;27(7):52–8.

    PubMed  Google Scholar 

  3. Lerner EB, Schwartz RB, Coule PL, Weinstein ES, Cone DC, Hunt RC, et al. Mass casualty triage: an evaluation of the data and development of a proposed national guideline. Disaster Med Public Health Prep. 2008;2(Suppl 1):S25-34. https://doi.org/10.1097/DMP.0b013e318182194e.

    Article  PubMed  Google Scholar 

  4. Bennett A. Methodologies utilized and lessons learned in high threat environments and mass casualty environments. J High Threat Austere Med. 2019. https://doi.org/10.33553/jhtam.v0i0.22.

    Article  Google Scholar 

  5. Vassallo J, Beavis J, Smith JE, Wallis LA. Major incident triage: derivation and comparative analysis of the modified physiological Triage Tool (MPTT). Injury. 2017;48(5):992–9. https://doi.org/10.1016/j.injury.2017.01.038.

    Article  PubMed  Google Scholar 

  6. Vassallo J, Smith JE, Wallis LA. Major incident triage and the implementation of a new triage tool, the MPTT-24. J R Army Med Corps. 2018;164(2):103–6. https://doi.org/10.1136/jramc-2017-000819.

    Article  PubMed  Google Scholar 

  7. Vassallo J, Moran CG, Cowburn P, Smith J. New NHS prehospital major incident triage tool: from MIMMS to MITT. Emerg Med J. 2022;39(11):800–2. https://doi.org/10.1136/emermed-2022-212569.

    Article  PubMed  Google Scholar 

  8. Malik NS, Chernbumroong S, Xu Y, Vassallo J, Lee J, Bowley DM, et al. The BCD Triage Sieve outperforms all existing major incident triage tools: Comparative analysis using the UK national trauma registry population. EClinicalMedicine. 2021;36:100888. https://doi.org/10.1016/j.eclinm.2021.100888.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Malik NS, Chernbumroong S, Xu Y, Vassallo J, Lee J, Moran CG, Newton T, Arul GS, Lord JM, Belli A, Keene D, Foster M, Hodgetts T, Bowley DM, Gkoutos GV. Paediatric major incident triage: UK military tool offers best performance in predicting the need for time-critical major surgical and resuscitative intervention. EClinicalMedicine. 2021;40:101100. https://doi.org/10.1016/j.eclinm.2021.101100.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Alberta Health Services. Trauma Registry[Internet]. Calgary AB: Alberta Trauma Services;[cited 2022 Dec 4]. Available from: https://www.albertahealthservices.ca/info/Page14202.aspx.

  11. Corporation M. Microsoft excel. Raymond, United States: Microsoft Corporation; 2019.

    Google Scholar 

  12. Lerner EB, McKee CH, Cady CE, Cone DC, Colella MR, Cooper A, et al. A consensus-based gold standard for the evaluation of mass casualty triage systems. Prehosp Emerg Care. 2015;19(2):267–71. https://doi.org/10.3109/10903127.2014.959222.

    Article  PubMed  Google Scholar 

  13. Streiner DL, Kottner J. Recommendations for reporting the results of studies of instrument and scale development and testing. J Adv Nurs. 2014;70(9):1970–9. https://doi.org/10.1111/jan.12402.

    Article  PubMed  Google Scholar 

  14. Tartaglione M, Carenzo L, Gamberini L, Lupi C, Giugni A, Mazzoli CA, et al. Multicentre observational study on practice of prehospital management of hypotensive trauma patients: the SPITFIRE study protocol. BMJ Open. 2022;12(5): e062097. https://doi.org/10.1136/bmjopen-2022-062097.

    Article  PubMed  PubMed Central  Google Scholar 

  15. R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2013.

    Google Scholar 

  16. Frykberg ER. Medical management of disasters and mass casualties from terrorist bombings: how can we cope? J Trauma. 2002;53(2):201–12. https://doi.org/10.1097/00005373-200208000-00001.

    Article  PubMed  Google Scholar 

  17. Committee on Trauma. Resources for optimal care of the injured patient. Chicago: American College of Surgeons; 2014. p. 25.

    Google Scholar 

  18. Challen K, Walter D. Major incident triage: comparative validation using data from 7th July bombings. Injury. 2013;44(5):629–33. https://doi.org/10.1016/j.injury.2012.06.026.

    Article  PubMed  Google Scholar 

  19. Kahn CA, Schultz CH, Miller KT, Anderson CL. Does START triage work an outcomes assessment after a disaster. Ann Emerg Med. 2009;54(3):424-30,430.e1. https://doi.org/10.1016/j.annemergmed.2008.12.035.

    Article  PubMed  Google Scholar 

  20. McKee CH, Heffernan RW, Willenbring BD, Schwartz RB, Liu JM, Colella MR, et al. Comparing the accuracy of mass casualty triage tools when used in an adult population. Prehosp Emerg Care. 2020;24(4):515–24. https://doi.org/10.1080/10903127.2019.1641579.

    Article  PubMed  Google Scholar 

  21. Wallis LA, Carley S. Comparison of paediatric major incident primary triage tools. Emerg Med J. 2006;23(6):475–8. https://doi.org/10.1136/emj.2005.032672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cross KP, Cicero MX. Head-to-head comparison of disaster triage methods in pediatric, adult, and geriatric patients. Ann Emerg Med. 2013;61(6):668-76.e7. https://doi.org/10.1016/j.annemergmed.2012.12.023.

    Article  PubMed  Google Scholar 

  23. Baxt WG, Upenieks V. The lack of full correlation between the injury severity score and the resource needs of injured patients. Ann Emerg Med. 1990;19(12):1396–400. https://doi.org/10.1016/s0196-0644(05)82606-x.

    Article  CAS  PubMed  Google Scholar 

  24. Pepper M, Archer F, Moloney J. Triage in complex, coordinated terrorist attacks. Prehosp Disaster Med. 2019Aug;34(4):442–8. https://doi.org/10.1017/S1049023X1900459X.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Alberta Health Services staff who maintain the Alberta Trauma Registry and who helped facilitate access to the registry data for this study. Dr. Andrew Kirkpatrick advised on the early stages of the project design for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Jerome.

Ethics declarations

Conflict of interest

All the authors declare no conflicts of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 367 KB)

Supplementary file2 (DOCX 26 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jerome, D., Savage, D.W. & Pietrosanu, M. An assessment of mass casualty triage systems using the Alberta trauma registry. Can J Emerg Med 25, 659–666 (2023). https://doi.org/10.1007/s43678-023-00529-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43678-023-00529-8

Keywords

Mots clés

Navigation