Skip to main content
Log in

Free base porphyrin–cyanine dye conjugate: synthesis and optical properties

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The covalent combination of a cyanine dye (IR-783) with a tetraphenyl porphyrin unit through an ether linkage results in a photoactive system capable of producing singlet oxygen. The synthesis, characterization and photophysical properties of the resulting novel free base porphyrin–cyanine conjugate named TPPO-IR-783 (TOI) is reported. Excited state properties were studied in various solvents with differing polarity. The fluorescence is strongly solvent dependent, however this is not the case for singlet oxygen phosphorescence, which is only observed in tetrahydrofuran (THF), when comparing 8 different polar, non-polar and medium-polarity solvents. This novel type of porphyrin–cyanine photosensitizer has the ability to produce singlet oxygen and absorbs light at NIR wavelengths.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All available data belonging to this research can be found in this RDM repository: https://doi.org/10.21942/uva.22219864.v1

Abbreviations

A3B porphyrin:

Denotation of the substitution pattern of the meso-substituents on the porphyrin: 3 “A” substituents and 1 “B” substituent. In TPPOH (Fig. 3), A = phenyl group and B = 4-hydroxyphenyl group

A.U.:

Arbitrary units

DMF:

N, N-dimethylformamide

DMSO:

Dimethyl sulfoxide

ET:

Electron transfer

EtOH:

Ethanol

fs-TA:

Femtosecond transient absorption

IR:

Infrared

MeOH:

Methanol

ns-TA:

Nanosecond transient absorption

NIR:

Near-infrared

PBS:

Phosphate buffered saline

PS:

Photosensitizer

SOCT-ISC:

Spin–orbit charge transfer intersystem crossing

THF:

Tetrahydrofuran

TPP:

5,10,15,20-Tetraphenylporphyrin

TPPOH:

5-(4-Hydroxyphenyl)-10,15,20-triphenylporphyrin

References

  1. Tanaka, T., & Osuka, A. (2015). Conjugated porphyrin arrays: Synthesis, properties and applications for functional materials. Chemical Society Reviews, 44, 943–969.

    Article  CAS  PubMed  Google Scholar 

  2. Senge, M. O., Sergeeva, N. N., & Hale, K. J. (2021). Classic highlights in porphyrin and porphyrinoid total synthesis and biosynthesis. Chemical Society Reviews, 50, 4730–4789.

    Article  CAS  PubMed  Google Scholar 

  3. Shindy, H. A. (2017). Fundamentals in the chemistry of cyanine dyes: A review. Dyes and Pigments, 145, 505–513.

    Article  CAS  Google Scholar 

  4. Nödling, A. R., Mills, E. M., Li, X., et al. (2020). Cyanine dye mediated mitochondrial targeting enhances the anti-cancer activity of small-molecule cargoes. Chemical Communications, 56, 4672–4675.

    Article  PubMed  Google Scholar 

  5. Abd El-Aal, R. M., & Younis, M. (2004). Synthesis and antimicrobial activity of certain novel monomethine cyanine dyes. Dyes and Pigments, 60, 205–214.

    Article  CAS  Google Scholar 

  6. Eissa, F. (2009). Preparation, antibacterial activity and absorption spectra of pyrazolo–oxadiazine cyanine Dyes. Journal of the Chinese Chemical Society, 56, 843–849.

    Article  CAS  Google Scholar 

  7. Delaey, E., van Laar, F., De Vos, D., et al. (2000). Comparative study of the photosensitizing characteristics of some cyanine dyes. Journal of Photochemistry and Photobiology B: Biology, 55, 27–36.

    Article  CAS  PubMed  Google Scholar 

  8. Li, Y., Zhou, Y., Yue, X., et al. (2021). Cyanine conjugates in cancer theranostics. Bioactive Materials, 6, 794–809.

    Article  CAS  PubMed  Google Scholar 

  9. Shi, C., Wu, J. B., & Pan, D. (2016). Review on near-infrared heptamethine cyanine dyes as theranostic agents for tumor imaging, targeting, and photodynamic therapy. Journal of Biomedial Optics, 21, 050901.

    Article  Google Scholar 

  10. Feng, L., Chen, W., Ma, X., et al. (2020). Near-infrared heptamethine cyanines (Cy7): From structure, property to application. Organic & Biomolecular Chemistry, 18, 9385–9397.

    Article  CAS  Google Scholar 

  11. Giovannetti, R. (2012). The use of spectrophotometry UV-Vis for the study of porphyrins [Internet]. Macro to Nano Spectroscopy. https://doi.org/10.5772/38797

    Article  Google Scholar 

  12. Jeong, H.-G., & Choi, M.-S. (2016). Design and properties of porphyrin-based singlet oxygen generator. Israel Journal of Chemistry, 56, 110–118.

    Article  CAS  Google Scholar 

  13. Habermeyer, B., & Guilard, R. (2018). Some activities of PorphyChem illustrated by the applications of porphyrinoids in PDT, PIT and PDI. Photochemical & Photobiological Sciences, 17, 1675–1690.

    Article  CAS  Google Scholar 

  14. Melissari, Z., Williams, R. M., & Senge, M. (2021). Porphyrinoids for photodynamic therapy. In H. Lang & T. Rueffer (Eds.), Applications of porphyrinoids as functional materials (pp. 252–291). Croydon: Royal Society of Chemistry.

    Chapter  Google Scholar 

  15. James, N. S., Cheruku, R. R., Missert, J. R., et al. (2018). Measurement of cyanine dye photobleaching in photosensitizer cyanine dye conjugates could help in optimizing light dosimetry for improved photodynamic therapy of cancer. Molecules, 23, 1842–1853.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ogawa, K., Nagatsuka, Y., & Kobuke, Y. (2011). Synthesis and photophysical properties of doubly porphyrin-substituted cyanine dye. Journal of Porphyrins and Phthalocyanines, 15, 678–685.

    Article  CAS  Google Scholar 

  17. Zhdanova, K. A., Ezhov, A. V., Bragina, N. A., et al. (2018). Synthesis of new binary porphyrin–cyanine conjugates and their self-aggregation in organic-aqueous media. Mendeleev Communications, 28, 626–628.

    Article  CAS  Google Scholar 

  18. Adler, A. D., Longo, F. R., Finarelli, J. D., et al. (1967). A simplified synthesis for meso-tetraphenylporphine. Journal of Organic Chemistry, 32, 476.

    Article  CAS  Google Scholar 

  19. Yang, G., Zhang, Y., Zou, J., et al. (2019). Synthesis and biological evaluation of genistein-IR783 conjugate: cancer cell targeted delivery in MCF-7 for superior anti-cancer therapy. Molecules, 24, 4120–4136.

    Article  Google Scholar 

  20. Taniguchi, M., Lindsey, J. S., Bocian, D. F., et al. (2021). Comprehensive review of photophysical parameters (ε, Φf, τs) of tetraphenylporphyrin (H2TPP) and zinc tetraphenylporphyrin (ZnTPP)—Critical benchmark molecules in photochemistry and photosynthesis. Journal of Photochemistry and Photobiology, 46, 100401.

    Article  CAS  Google Scholar 

  21. Patel, N. J., Chen, Y., Joshi, P., et al. (2016). Effect of metalation on porphyrin-based bifunctional agents in tumor imaging and photodynamic therapy. Bioconjugate Chemistry, 27, 667–680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bricks, J. L., Slominskii, Y. L., Panas, I. D., et al. (2017). Fluorescent J-aggregates of cyanine dyes: Basic research and applications review. Methods and Applications in Fluorescence, 6, 012001.

    Article  PubMed  Google Scholar 

  23. Subuddhi, U., Haldar, S., Sankararaman, S., et al. (2006). Photophysical behaviour of 1-(4-N, N-Dimethylaminophenylethynl)Pyrene (DMAPEPy) in homogeneous media. Photochemical & Photobiological Sciences, 5, 459–466.

    Article  CAS  Google Scholar 

  24. Wang, Y., Gu, Y., Zuo, Z., et al. (2011). Choosing optimal wavelength for photodynamic therapy of port wine stains by mathematic simulation. Journal of Biomedical Optics, 16, 098001.

    Article  PubMed  Google Scholar 

  25. Nielsen, K. P., Juzeniene, A., Juzenas, P., et al. (2005). Choice of optimal wavelength for PDT: The significance of oxygen depletion. Photochemistry and Photobiology, 81, 1190–1194.

    Article  CAS  PubMed  Google Scholar 

  26. Seybold, P. G., & Gouterman, M. (1969). Porphyrins. XIII: Fluorescence spectra and quantum yields. Journal of Molecular Spectroscopy, 31, 1–13.

    Article  CAS  Google Scholar 

  27. Panigrahi, S. K., & Mishra, A. K. (2019). Inner filter effect in fluorescence spectroscopy: As a problem and as a solution. Journal of Photochemistry and Photobiology, 41, 100318.

    Article  Google Scholar 

  28. Brancato, G., Signore, G., Neyroz, P., et al. (2015). Dual fluorescence through Kasha’s rule breaking: An unconventional photomechanism for intracellular probe design. The Journal of Physical Chemistry B, 119, 6144–6154.

    Article  CAS  PubMed  Google Scholar 

  29. Hananya, N., Green, O., Blau, R., et al. (2017). Highly efficient chemiluminescence probe for the detection of singlet oxygen in living cells. Angewandte Chemie International Edition, 56, 11793–11796.

    Article  CAS  PubMed  Google Scholar 

  30. Gibbons, D. J., Boh, A., Habermeyer, B., Villandier, N., Leroy-Lhez, S., & Williams, R. M. (2022). Photo-activated thin films of porphyrins for reactive oxygen species generation. Journal of Porphyrins and Phthalocyanines, 26, 550–562.

    Article  CAS  Google Scholar 

  31. James, N. S., Chen, Y., Joshi, P., et al. (2013). Evaluation of polymethine dyes as potential probes for near infrared fluorescence imaging of tumors: Part – 1. Theranostics, 3, 692–702.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mazur, L. M., Roland, T., Leroy-Lhez, S., et al. (2019). Efficient singlet oxygen photogeneration by zinc porphyrin dimers upon one- and two-photon excitation. The Journal of Physical Chemistry B, 123, 4271–4277.

    Article  CAS  PubMed  Google Scholar 

  33. Schmidt, R., Tanielian, C., Dunsbach, R., et al. (1994). Phenalenone, a universal reference compound for the determination of quantum yields of singlet oxygen O2(1Δg) sensitization. Journal of Photochemistry and Photobiology A: Chemistry, 79, 11–17.

    Article  CAS  Google Scholar 

  34. Wilkinson, F., Helman, W. P., & Ross, A. B. (1995). Rate constants for the decay and reactions of the lowest electronically excited singlet state of molecular oxygen in solution. An expanded and revised compilation. Journal of Physical and Chemical Reference Data, 24, 663–677. https://doi.org/10.1063/1.5559655

    Article  CAS  Google Scholar 

  35. Gibbons, D. J., Farawar, A., Mazzella, P., et al. (2020). Making triplets from photo-generated charges: Observations, mechanisms and theory. Photochemical & Photobiological Sciences, 19, 136–158.

    Article  CAS  Google Scholar 

  36. Filatov, M. A., Karuthedath, S., Polestshuk, P. M., et al. (2018). Control of triplet state generation in heavy atom-free BODIPY–anthracene dyads by media polarity and structural factors. Physical Chemistry Chemical Physics: PCCP, 20, 8016–8031.

    Article  CAS  PubMed  Google Scholar 

  37. Colvin, M. T., Ricks, A. B., Scott, A. M., et al. (2012). Intersystem crossing involving strongly spin exchange-coupled radical ion pairs in donor–bridge–acceptor molecules. Journal of Physical Chemistry A, 116, 1923–1930.

    Article  CAS  PubMed  Google Scholar 

  38. Vân Anh, N., Schlosser, F., Groeneveld, M. M., Van Stokkum, I. H. M., Würthner, F., & Williams, R. M. (2009). Photoinduced interactions in a pyrene-calix[4]arene-perylene bisimide dye system: Probing ground-state conformations with excited-state dynamics of charge separation and recombination. Journal of Physical Chemistry C, 113, 18358–18368.

    Article  Google Scholar 

  39. Demas, J. N., & Crosby, G. A. (1971). The measurement of photoluminescence quantum yields a review. Journal of Physics Chemistry, 75, 991–1024.

    Article  Google Scholar 

  40. Origin, Version (2018b). OriginLab Corporation. Northampton.

  41. Kumpulainen, T., Bakker, B. H., Hilbers, M., et al. (2015). Synthesis and spectroscopic characterization of 1,8-naphthalimide derived “super” photoacids. The Journal of Physical Chemistry B, 119, 2515–2524.

    Article  CAS  PubMed  Google Scholar 

  42. Igor Pro (Wavemetrics, Lake Oswego, OR, USA).

  43. Snellenburg, J. J., Laptenok, S., Seger, R., et al. (2012). Glotaran: A java-based graphical user interface for the R package TIMP. Journal of Statistical Software, 49, 1–22.

    Article  Google Scholar 

Download references

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement no. 764837. We thank the Erasmus+ exchange program for supporting JPM. We thank Prof. Patrick Trouillas (Limoges) for the design of the Table of Contents picture. We thank Sarah Egan-Fraser for her contribution to this research, as summarized in the note above.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stéphanie Leroy-Lhez or René M. Williams.

Ethics declarations

Conflict of interest

There are no conflict of interest to declare.

Additional information

Topical Collection in honor of Prof. Dr. A. M. (Fred) Brouwer and his contributions to science.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2416 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gibbons, D.J., Berbiguier, Y., Mulvaney, J.P. et al. Free base porphyrin–cyanine dye conjugate: synthesis and optical properties. Photochem Photobiol Sci 23, 163–176 (2024). https://doi.org/10.1007/s43630-023-00510-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-023-00510-5

Navigation