Skip to main content
Log in

Ion valence-gated photochromism of an aza-crowned diarylethene

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A non-photochromic diarylethene 2o with an N-phenylaza-15-crown-5 was synthesized. When the nitrogen atom in the aza-crown ring was protonated, it became photochromic due to the prevention of a twisted intramolecular charge transfer (TICT). Although addition of a monovalent metal cation (Li+, Na+, K+, Rb+, Cs+, Cu+, Ag+) in acetonitrile could not stop the TICT so that it was not photochromic, the addition of a multivalent metal cation (Mg2+, Ca2+, Sr2+, Ba2+, Fe2+, Ni2+, Al3+, Sb5+) changed 2o to be photochromic due to the strong attraction of the lone pair on the nitrogen atom. In the presence of excess Cu2+, 2o was oxidized to be EPR-detectable 2o·+, which was thermally unstable as well as inert towards visible-light irradiation. However, 2o·+ was further oxidized to be fairly stable 2o2+ by the irradiation of 365-nm light in the presence of Cu2+. ESI–MS measurements strongly suggested the generation of 2o·+ by mixing 2o with Cu(ClO4)2 in acetonitrile, and the transformation of 2o·+ to 2o2+ by successive 365-nm light irradiation. Fe3+ similarly worked as the oxidant, but the two-step oxidation of 2o to 2o2+ occurred more easily.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2
Fig. 9
Fig. 10
Scheme 3

Copyright 2011 American Chemical Society)

Fig. 11
Fig. 12
Scheme 4
Scheme 5
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Fritzsche, M. (1867). Note sur les carbures d’hydrogène solides, tirés du goudron de houille. Comptes Rendus, 69(1), 1035–1037.

    Google Scholar 

  2. Hirshberg, Y. (1950). Photochromié dans la série de la bianthrone. Comptes Rendus, 231(2), 903–904.

    CAS  Google Scholar 

  3. Brown, G. H. (1971). Techniques of chemistry (Vol. 3). Wiley-Interscience.

    Google Scholar 

  4. Dürr, H., & Bouas-Laurent, H. (2003). Photochromism: Molecules and systems. Elsevier.

    Google Scholar 

  5. Crano, J. C., & Gugglielmetti, R. J. (1999). Organic photochromic and thermochromic compounds (Vols. 1–2). Plenum Press.

  6. Feringa, B., & Browne, W. R. (2011). Molecular switches (2nd ed., Vols. 1–2). Wiley-VCH.

  7. Irie, M., Yokoyama, Y., & Seki, T. (2013). New frontiers in photochromism. Springer.

  8. Tian, H., & Zhang, J. (2016). Photochromic materials. Wiley-VCH.

    Google Scholar 

  9. Yokoyama, Y., & Nakatani, K. (2017). Photon-working switches. Springer.

  10. Miyasaka, H., Matsuda, K., Abe, J., & Kawai, T. (2020). Photosynergetic responses in molecules and molecular aggregates. Springer.

    Book  Google Scholar 

  11. Irie, M. (2000). Diarylethenes for memories and switches. Chemical Reviews, 100(5), 1685–1716. https://doi.org/10.1021/cr980069d

    Article  CAS  PubMed  Google Scholar 

  12. Irie, M., Fukaminato, T., Matsuda, K., & Kobatake, S. (2014). Photochromism of diarylethene molecules and crystals: Memories, switches, and actuators. Chemical Reviews, 114(24), 12174–12277. https://doi.org/10.1021/cr500249p

    Article  CAS  PubMed  Google Scholar 

  13. Irie, M. (2021). Diarylethene molecular photoswitches: Concepts and functionalities. Wiley-VCH.

    Book  Google Scholar 

  14. Wezenberg, S. J. (2022). Photoswitchable molecular tweezers: Isomerization to control substrate binding, and what about vice versa? Chemical Communications, 58(79), 11045–11058. https://doi.org/10.1039/D2CC04329G

    Article  CAS  PubMed  Google Scholar 

  15. Bouas-Laurent, H., & Dürr, H. (2001). Organic photochromism (IUPAC technical report). Pure and Applied Chemistry, 73(4), 639–665. https://doi.org/10.1351/pac200173040639

    Article  CAS  Google Scholar 

  16. Yumoto, K., Irie, M., & Matsuda, K. (2008). Control of the photoreactivity of diarylethene derivatives by quaternarization of the pyridylethynyl group. Organic Letters, 10(10), 2051–2054. https://doi.org/10.1021/ol8005216

    Article  CAS  PubMed  Google Scholar 

  17. Mahvidi, S., Takeuchi, S., Kusumoto, S., Sato, H., Nakagawa, T., & Yokoyama, Y. (2016). Gated photochromic system of diarylethene with a photon-working key. Organic Letters, 18(19), 5042–5045. https://doi.org/10.1021/acs.orglett.6b02494

    Article  CAS  PubMed  Google Scholar 

  18. Hou, I.C.-Y., Berger, F., Narita, A., Müllen, K., & Hecht, S. (2020). Proton-gated ring-closure of a negative photochromic azulene-based diarylethene. Angewandte Chemie International Edition, 59(42), 18532–18536. https://doi.org/10.1002/anie.202007989

    Article  CAS  PubMed  Google Scholar 

  19. Liu, H.-H., & Chen, Y. (2010). Carbon dioxide and water as a key for unlocking photochromism of diarylethene derivative. Journal of Photochemistry and Photobiology, A: Chemistry, 215(1), 103–107. https://doi.org/10.1016/j.jphotochem.2010.08.002

    Article  CAS  Google Scholar 

  20. Song, B., Li, H., Yang, L., Zhang, F., & Xiang, J. (2012). Acid/base gated photochromism of diarylethenes with quinoline derivatives. Chinese Journal of Chemistry, 30(7), 1393–1398. https://doi.org/10.1002/cjoc.201200128

    Article  CAS  Google Scholar 

  21. Zhang, J., Tan, W., Meng, X., & Tian, H. (2009). Soft mimic gear-shift with a multi-stimulus modified diarylethene. Journal of Materials Chemistry, 19(32), 5726–5729. https://doi.org/10.1039/b908707a

    Article  CAS  Google Scholar 

  22. Wu, Y., Chen, S., Yang, Y., Zhang, Q., Xie, Y., Tian, H., & Zhu, W. (2012). A novel gated photochromic reactivity controlled by complexation/dissociation with BF3. Chemical Communications, 48(4), 528–530. https://doi.org/10.1039/C1CC15824D

    Article  CAS  PubMed  Google Scholar 

  23. Weng, T., Zhang, K., Wu, B., Chen, X., Zou, Q., Zeng, T., & Zhu, L. (2019). Orthogonally incorporating dual-fluorescence control into gated photochromism for multifunctional molecular switching. Chemistry—A European Journal, 25(67), 15281–15287. https://doi.org/10.1002/chem.201903759

    Article  CAS  PubMed  Google Scholar 

  24. Hu, X. G., Li, X. L., Kim, H. K., Ahn, K.-H., & Yang, S. I. (2020). Gated photochromic reactivity of azadithiacrown-ether functionalized diarylethene. Dyes and Pigments, 172, 107869. https://doi.org/10.1016/j.dyepig.2019.107869

    Article  CAS  Google Scholar 

  25. Hu, X. G., Li, X. L., Ahn, K.-H., & Yang, S. I. (2020). Synthesis and characterization of gated photochromic diarylethene functionalized with dipicolylamine. Dyes and Pigments, 176, 108202. https://doi.org/10.1016/j.dyepig.2020.108202

    Article  CAS  Google Scholar 

  26. Li, Y., Chen, X., Weng, T., Yang, J., Zhao, C., Wu, B., Zhang, M., Zhu, L., & Zou, Q. (2020). A monomolecular platform with varying gated photochromism. RSC Advances, 10(69), 42194–42199. https://doi.org/10.1039/d0ra08214g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Poon, P.C.-T., Lam, W. H., & Yam, V.W.-W. (2011). Gated photochromism in triarylborane-containing dithienylethenes: A new approach to a “lock-unlock” system. Journal of the American Chemical Society, 133(49), 19622–19625. https://doi.org/10.1021/ja208097a

    Article  CAS  PubMed  Google Scholar 

  28. Irie, M., Miyatake, O., & Uchida, K. (1992). Blocked photochromism of diarylethenes. Journal of the American Chemical Society, 114(22), 8715–8716. https://doi.org/10.1021/ja00048a063

    Article  CAS  Google Scholar 

  29. Irie, M., Miyatake, O., Uchida, K., & Eriguchi, T. (1994). Photochromic diarylethenes with intralocking arms. Journal of the American Chemical Society, 116(22), 9894–9900. https://doi.org/10.1021/ja00101a010

    Article  CAS  Google Scholar 

  30. Liu, K., Wen, Y., Shi, T., Li, F., Zhao, Y., Huang, C., & Yi, T. (2014). DNA gated photochromism and fluorescent switch in a thiazole orange modified diarylethene. Chemical Communications, 50(65), 9141–9144. https://doi.org/10.1039/c4cc02783c

    Article  CAS  PubMed  Google Scholar 

  31. Mao, Y., Liu, K., Lv, G., Wen, Y., Zhu, X., Lan, H., & Yi, T. (2015). CB[8] gated photochromism of a diarylethene derivative containing thiazole orange groups. Chemical Communications, 51(30), 6667–6670. https://doi.org/10.1039/c5cc01390a

    Article  CAS  PubMed  Google Scholar 

  32. Ohsumi, M., Fukaminato, T., & Irie, M. (2005). Chemical control of the photochromic reactivity of diarylethene derivatives. Chemical Communications, 2005(31), 3921–3923. https://doi.org/10.1039/b506801k

    Article  CAS  Google Scholar 

  33. Lemieux, V., & Branda, N. R. (2005). Reactivity-gated photochromism of 1,2-dithienylethenes for potential use in dosimetry applications. Organic Letters, 7(14), 2969–2972. https://doi.org/10.1021/ol050971p

    Article  CAS  PubMed  Google Scholar 

  34. Kühni, J., & Belser, P. (2007). Gated photochromism of 1,2-diarylethenes. Organic Letters, 9(10), 1915–1918. https://doi.org/10.1021/ol070487h

    Article  CAS  PubMed  Google Scholar 

  35. Li, X., Ma, Y., Wang, B., & Li, G. (2008). “Lock and key control” of photochromic reactivity by controlling the oxidation/reduction state. Organic Letters, 10(16), 3639–3642. https://doi.org/10.1021/ol8013655

    Article  CAS  PubMed  Google Scholar 

  36. Nourmohammadian, F., Wu, T., & Branda, N. R. (2011). A ‘chemically-gated’ photoresponsive compound as a visible detector for organophosphorus nerve agents. Chemical Communications, 47(39), 10954–10956. https://doi.org/10.1039/c1cc13685b

    Article  CAS  PubMed  Google Scholar 

  37. Song, B., Li, H., Yang, L., Zhao, C., Sai, H., Zhang, S., Zhang, F., & Xiang, J. (2012). Esterifiable/hydrolytic control of photochromism of diarylethenes with 8-hydroxyquinoline derivatives. Journal of Photochemistry and Photobiology, A: Chemistry, 241(1), 21–25. https://doi.org/10.1016/j.jphotochem.2012.05.005

    Article  CAS  Google Scholar 

  38. Asadirad, A. M., Boutault, S., Emo, Z., & Branda, N. R. (2014). Controlling a polymer adhesive using light and a molecular switch. Journal of the American Chemical Society, 136(8), 3024–3027. https://doi.org/10.1021/ja500496n

    Article  CAS  PubMed  Google Scholar 

  39. Kida, J., Imato, K., Goseki, R., Aoki, D., Morimoto, M., & Otsuka, H. (2018). The photoregulation of a mechanochemical polymer scission. Nature Communications, 9, 3504. https://doi.org/10.1038/s41467-018-05996-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Barber, R. W., McFadden, M. E., Hu, X., & Robb, M. J. (2019). Mechanochemically gated photoswitching: Expanding the scope of polymer mechanochromism. Synlett, 30(15), 1725–1732. https://doi.org/10.1055/s-0037-1611858

    Article  CAS  Google Scholar 

  41. Irie, M., & Sayo, K. (1992). Solvent effects on the photochromic reactions of diarylethene derivatives. Journal of Physical Chemistry, 96(19), 7671–7674. https://doi.org/10.1021/j100198a035

    Article  CAS  Google Scholar 

  42. Ohsumi, M., Hazama, M., Fukaminato, T., & Irie, M. (2008). Photocyclization reaction of a diarylmaleimide derivative in polar solvents. Chemical Communications, 2008(28), 3281–3283. https://doi.org/10.1039/B802780C

    Article  Google Scholar 

  43. Kobatake, S., Terakawa, Y., & Imagawa, H. (2009). Solvent effect on photochromism of a dithienylperfluorocyclopentene having diethylamino group. Tetrahedron, 65(31), 6104–6108. https://doi.org/10.1016/j.tet.2009.05.053

    Article  CAS  Google Scholar 

  44. de Silva, A. P., Gunaratne, H. Q. N., Gunnlaugsson, T., Huxley, A. J. M., McCoy, C. P., Rademacher, J. T., & Rice, T. E. (1997). Signaling recognition events with fluorescent sensors and switches. Chemical Reviews, 97(5), 1515–1566. https://doi.org/10.1021/cr960386p

    Article  PubMed  Google Scholar 

  45. Junk, P. C., & Steed, J. W. (1999). Crown ether chemistry of the alkaline earth nitrates. Journal of the Chemical Society, Dalton Transactions, 1999(3), 407–414. https://doi.org/10.1039/A807006G

    Article  Google Scholar 

  46. Rounaghi, G. H., Khoshnood, R. S., & Zavvar, M. H. A. (2006). Study of complex formation between N-phenylaza-15-crown-5 with Mg2+, Ca2+, Ag+ and Cd2+ metal cations in some binary mixed aqueous and non-aqueous solvents using the conductometric method. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 54(3–4), 247–252. https://doi.org/10.1007/s10847-005-8380-7

    Article  CAS  Google Scholar 

  47. Malval, J.-P., Gosse, I., Morand, J.-P., & Lapouyade, R. (2002). Photoswitching of cation complexation with a monoaza-crown dithienylethene photochrome. Journal of the American Chemical Society, 124(6), 904–905. https://doi.org/10.1021/ja0167203

    Article  CAS  PubMed  Google Scholar 

  48. Shannon, R. D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst, A32(5), 751–767. https://doi.org/10.1107/S0567739476001551

    Article  CAS  Google Scholar 

  49. Sumalekshmy, S., & Gopidas, K. R. (2005). Reaction of aromatic amines with Cu(ClO4)2 in acetonitrile as a facile route to amine radical cation generation. Chemical Physics Letters, 413(4–6), 294–299. https://doi.org/10.1016/j.cplett.2005.06.041

    Article  CAS  Google Scholar 

  50. Kirchgessner, M., Sreenath, K., & Gopidas, K. R. (2006). Understanding reactivity patterns of the dialkylaniline radical cation. Journal of Organic Chemistry, 71(26), 9849–9852. https://doi.org/10.1021/jo061809i

    Article  CAS  PubMed  Google Scholar 

  51. Sreenath, K., Suneesh, C. V., Kumar, V. K. R., & Gopidas, K. R. (2008). Cu(II)-mediated generation of triarylamine radical cations and their dimerization. An easy route to tetraarylbenzidines. The Journal of Organic Chemistry, 73(8), 3245–3251. https://doi.org/10.1021/jo800349n

    Article  CAS  PubMed  Google Scholar 

  52. Sreenath, K., Thomas, T. G., & Gopidas, K. R. (2011). Cu(II) mediated generation and spectroscopic study of the tris(4-anisyl)amine radical cation and dication Unusually shielded chemical shifts in the dication. Organic Letters, 13(5), 1134–1137. https://doi.org/10.1021/ol103167m

    Article  CAS  PubMed  Google Scholar 

  53. Fenin, J. B., Mann, M., Meng, C. K., Wong, S. F., & Whitehouse, O. M. (1989). Electrospray ionization for mass spectrometry of large biomolecules. Science, 246(4926), 64–71. https://doi.org/10.1126/science.2675315

    Article  Google Scholar 

  54. Bard, A. J. (1974). Encyclopedia of electrochemistry of the elements, (Vol. 2). Marcel Dekker.

    Google Scholar 

  55. Bard, A. J. (1982). Encyclopedia of electrochemistry of the elements (Vol. 9). Marcel Dekker.

    Google Scholar 

  56. Pavlishchuk, V. V., & Addison, A. W. (2000). Conversion constants for redox potentials measured versus different reference electrodes in acetonitrile solutions at 25 °C. Inorganica Chimica Acta, 298(1), 97–102. https://doi.org/10.1016/S0020-1693(99)00407-7

    Article  CAS  Google Scholar 

  57. Fox, M. A., & Hurst, J. R. (1984). Electrochemically induced pericyclic reactions. A radical anionic cyclization. Journal of the American Chemical Society, 106(24), 7626–7627. https://doi.org/10.1021/ja00336a055

    Article  CAS  Google Scholar 

  58. Koshido, T., Kawai, T., & Yoshino, K. (1995). Optical and electrochemical properties of cis-1,2-dicyano-1,2-bis(2,4,5-trimethyl-3-thienyl)ethene. Journal of Physical Chemistry, 99(16), 6110–6114. https://doi.org/10.1021/j100016a055

    Article  CAS  Google Scholar 

  59. Peters, A., & Branda, N. R. (2003). Electrochromism in photochromic dithienylcyclopentenes. Journal of the American Chemical Society, 125(12), 3404–3405. https://doi.org/10.1021/ja028764x

    Article  CAS  PubMed  Google Scholar 

  60. Peters, A., & Branda, N. R. (2003). Electrochemically induced ring-closing of photochromic 1,2-dithienylcyclopentenes. Chemical Communications, 2003(8), 954–955. https://doi.org/10.1039/B211378C

    Article  Google Scholar 

  61. Gorodetsky, B., Samachetty, H. D., Donkers, R. L., Workentin, M. S., & Branda, N. R. (2004). Reductive electrochemical cyclization of a photochromic 1,2-dithienylcyclopentene dication. Angewandte Chemie International Edition, 43(21), 2812–2815. https://doi.org/10.1002/anie.200353029

    Article  CAS  PubMed  Google Scholar 

  62. Zhou, X.-H., Zhang, F.-S., Yuan, P., Sun, F., Pu, S.-Z., Zhao, F.-Q., & Tung, C.-H. (2004). Photoelectrochromic dithienylperfluorocyclopentene derivatives. Chemistry Letters, 33(8), 1006–1007. https://doi.org/10.1246/cl.2004.1006

    Article  CAS  Google Scholar 

  63. Moriyama, Y., Matsuda, K., Tanifuji, N., Irie, S., & Irie, M. (2005). Electrochemical cyclization/cycloreversion reactions of diarylethenes. Organic Letters, 7(15), 3315–3318. https://doi.org/10.1021/ol051149o

    Article  CAS  PubMed  Google Scholar 

  64. Takaku, S., Nishimura, R., & Morimoto, M. (2023). A turn-on mode fluorescent diarylethene having an azacrown ether receptor: Metal-ion-gated enhancement of the photoreactivity and fluorescence. Dyes and Pigments, 216, 111354. https://doi.org/10.1016/j.dyepig.2023.111354

    Article  CAS  Google Scholar 

  65. Balakit, A. A., Sert, Y., Çırak, Ç., Smith, K., Kariuki, B. M., & El-Hiti, G. A. (2017). Synthesis, vibrational spectra, and DFT simulations of 3-bromo-2-methyl-5-(4-nitrophenyl)thiophene. Journal of Applied Spectroscopy, 84(5), 888–899. https://doi.org/10.1007/s10812-017-0561-9

    Article  CAS  Google Scholar 

  66. Kolmar, T., Büllmann, S. M., Sarter, C., Höfer, K., & Jäschke, A. (2021). Development of high-performance pyrimidine nucleoside and oligonucleotide diarylethene photoswitches. Angewandte Chemie International Edition, 60(15), 8164–8173. https://doi.org/10.1002/anie.202014878

    Article  CAS  PubMed  Google Scholar 

  67. Fukaminato, T., Hirose, T., Doi, T., Hazama, M., Matsuda, K., & Irie, M. (2014). Molecular design strategy toward diarylethenes that photoswitch with visible light. Journal of the American Chemical Society, 136(49), 17145–17154. https://doi.org/10.1021/ja5090749

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by JSPS KAKENHI Grant Number JP26107009 in Scientific Research on Innovative Areas “Photosynergetics.” The authors are grateful to the Instrumental Analysis Center of Yokohama National University for its support in the NMR and MS measurements. Thanks are also extended to Mr. Tsuyoshi Ito, Yokohama National University, for his support in the spectral measurements for the characterization of compounds. We are indebted to the Zeon Corp. for their generous donation of octafluorocyclopentene. Part of this study was presented at the 9th International Symposium on Photochromism (ISOP2019), September 2019, Paris.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Takashi Ubukata or Yasushi Yokoyama.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1927 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takeguchi, A., Kikuchi, A., Ueno, K. et al. Ion valence-gated photochromism of an aza-crowned diarylethene. Photochem Photobiol Sci 23, 133–151 (2024). https://doi.org/10.1007/s43630-023-00508-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-023-00508-z

Keywords

Navigation