Skip to main content
Log in

A novel BLUF photoreceptor modulates the Xanthomonas citri subsp. citri–host plant interaction

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Plant–pathogen interaction is influenced by multiple environmental factors, including temperature and light. Recent works have shown that light modulates not only the defense response of plants but also the pathogens virulence. Xanthomonas citri subsp. citri (Xcc) is the bacterium responsible for citrus canker, an important plant disease worldwide. The Xcc genome presents four genes encoding putative photoreceptors: one bacteriophytochrome and three blue light photoreceptors, one LOV and two BLUFs (bluf1: XAC2120 and bluf2: XAC3278). The presence of two BLUFs proteins is an outstanding feature of Xcc. In this work we show that the bluf2 gene is functional. The mutant strain, XccΔbluf2, was constructed demonstrating that BLUF2 regulates swimming-type motility, adhesion to leaves, exopolysaccharide production and biofilm formation, features involved in the Xcc virulence processes. An important aspect during the plant–pathogen interaction is the oxidative response of the host and the consequent reaction of the pathogen. We observed that ROS detoxification is regulated by Xcc bluf2 gene. The phenotypes of disease in orange plants produced by WT and XccΔbluf2 strains were evaluated, observing different phenotypes. Altogether, these results show that BLUF2 negatively regulates virulence during citrus canker. This work constitutes the first report on BLUF-like receptors in plant pathogenic bacteria.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary Information files. Source data are provided with this paper.

References

  1. Van der Horst, M. A., Key, J., & Hellingwerf, K. J. (2007). Photosensing in chemotrophic, non-phototrophic bacteria: Let there be light sensing too. Trends in Microbiology, 15, 554–562.

    Article  PubMed  Google Scholar 

  2. Kottke, T., Xie, A., Larsen, D. S., & Hoff, W. D. (2018). Photoreceptors take charge: Emerging principles for light sensing. Annual Review of Biophysics, 47, 291–313.

    Article  CAS  PubMed  Google Scholar 

  3. Mandalari, C., Losi, A., & Gärtner, W. (2013). Distance-tree analysis, distribution and co-presence of bilin- and flavin-binding prokaryotic photoreceptors for visible light. Photochemical & Photobiological Sciences, 12, 1144–1157.

    Article  CAS  Google Scholar 

  4. Losi, A., Mandalari, C., & Gärtner, W. (2014). From plant infectivity to growth patterns: the role of blue-light sensing in the prokaryotic world. Plants, 3, 70–94.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gomelsky, M., & Hoff, W. D. (2011). Light helps bacteria make important lifestyle decisions. Trends in Microbiology, 19, 441–448.

    Article  CAS  PubMed  Google Scholar 

  6. Losi, A., & Gärtner, W. (2011). Old chromophores, new photoactivation paradigms, trendy applications: Flavins in blue light-sensing photoreceptors. Photochemistry and Photobiology, 87, 491–510.

    Article  CAS  PubMed  Google Scholar 

  7. Büttner, D., & Bonas, U. (2010). Regulation and secretion of Xanthomonas virulence factors. FEMS Microbiology Reviews, 34, 107–133.

    Article  PubMed  Google Scholar 

  8. Masuda, S. (2013). Light detection and signal transduction in the BLUF photoreceptors. Plant and Cell Physiology, 54, 171–179.

    Article  CAS  PubMed  Google Scholar 

  9. Nudel, C. B., & Hellingwerf, K. J. (2015). Photoreceptors in chemotrophic prokaryotes: the case of Acinetobacter spp. revisited. Photochemistry and Photobiology, 91, 1012–1020.

    Article  CAS  PubMed  Google Scholar 

  10. Kraiselburd, I., Gutt, A., Losi, A., Gärtner, W., & Orellano, E. G. (2015). Functional characterization of a LOV-Histidine Kinase photoreceptor from Xanthomonas citri subsp. citri. Photochemistry and Photobiology, 91, 1123–1132.

    Article  CAS  PubMed  Google Scholar 

  11. Kraiselburd, I., Alet, A. I., Tondo, M. L., Petrocelli, S., Daurelio, L. D., Monzón, J., Ruiz, O. A., Losi, A., & Orellano, E. G. (2012). A LOV protein modulates the physiological attributes of Xanthomonas axonopodis pv. citri relevant for host plant colonization. PLoS ONE, 7(6), e38226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kraiselburd, I., Daurelio, L. D., Tondo, M. L., Merelo, P., Cortadi, A. A., Talón, M., Tadeo, F. R., & Orellano, E. G. (2013). The LOV protein of Xanthomonas citri subsp. citri plays a significant role in the counteraction of plant immune responses during citrus canker. PLoS ONE, 8, 1–16.

    Article  Google Scholar 

  13. Tanaka, K., Nakasone, Y., Okajima, K., Ikeuchi, M., Tokutomi, S., & Terazima, M. (2012). Time-resolved tracking of interprotein signal transduction: Synechocystis PixD-PixE complex as a sensor of light intensity. Journal of the American Chemical Society, 134, 8336–8339.

    Article  CAS  PubMed  Google Scholar 

  14. Tschowri, N., Busse, S., & Hengge, R. (2009). The BLUF-EAL protein YcgF acts as a direct anti-repressor in a blue-light response of Escherichia coli. Genes & Development, 23, 522–534.

    Article  CAS  Google Scholar 

  15. Gomelsky, M., & Klug, G. (2002). BLUF: A novel FAD-binding domain involved in sensory transduction in microorganisms. Trends in Biochemical Sciences, 27, 497–500.

    Article  CAS  PubMed  Google Scholar 

  16. Mussi, M. A., Gaddy, J. A., Cabruja, M., Arivett, B. A., Viale, A. M., Rasia, R., & Actis, L. A. (2010). The opportunistic human pathogen Acinetobacter baumannii senses and responds to light. Journal of Bacteriology, 192, 6336–6345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Golic, A., Vaneechoutte, M., Nemec, A., Viale, A. M., Actis, L. A., & Mussi, M. A. (2013). Staring at the cold sun: Blue light regulation is distributed within the genus Acinetobacter. PLoS One, 8(1), e55059. https://doi.org/10.1371/journal.pone.0055059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ramírez, M. S., Müller, G. L., Pérez, J. F., Golic, A. E., & Mussi, M. A. (2015). More than just light: Clinical relevance of light perception in the nosocomial pathogen Acinetobacter baumannii and other members of the genus Acinetobacter. Photochemistry and Photobiology, 91, 1291–1301.

    Article  PubMed  Google Scholar 

  19. Abatedaga, I., Valle, L., Golic, E., Gabriela, L. M., Mor, F. E., Jaime, P. C., & Borsarelli, C. D. (2017). Integration of temperature and blue-light sensing in Acinetobacter baumannii through the BlsA sensor. Photochemistry and Photobiology, 93, 805–814.

    Article  CAS  PubMed  Google Scholar 

  20. Müller, G. L., Tuttobene, M., Altilio, M., Maitena, A., Nguyen, M., Cribb, P., Cybulski, L., Ramirez, M., Altabe, S., & Mussi, M. A. (2017). Light modulates metabolic pathways the human pathogen Acinetobacter. Journal of Bacteriology, 199, 1–17.

    Article  Google Scholar 

  21. Wood, C. R., Squire, M. S., Finley, N. L., Page, R. C., & Actis, L. A. (2019). Structural and functional analysis of the Acinetobacter baumannii BlsA photoreceptor and regulatory protein. PLoS ONE, 14, 1–24.

    Article  Google Scholar 

  22. Oberpichler, I., Rosen, R., Rasouly, A., Vugman, M., Ron, E. Z., & Lamparter, T. (2008). Light affects motility and infectivity of Agrobacterium tumefaciens. Environmental Microbiology, 10, 2020–2029.

    Article  CAS  PubMed  Google Scholar 

  23. Bai, Y., Rottwinkel, G., Feng, J., Liu, Y., & Lamparter, T. (2016). Bacteriophytochromes control conjugation in Agrobacterium fabrum. Journal of Photochemistry and Photobiology, B: Biology, 161, 192–199.

    Article  CAS  PubMed  Google Scholar 

  24. Bonomi, H. R., Toum, L., Sycz, G., Sieira, R., Toscani, A. M., Gudesblat, G. E., Leskow, F. C., Goldbaum, F. A., Vojnov, A. A., & Malamud, F. (2016). Xanthomonas campestris attenuates virulence by sensing light through a bacteriophytochrome photoreceptor. EMBO Reports, 17, 1565–1577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Moriconi, V., Sellaro, R., Ayub, N., Soto, G., Rugnone, M., Shah, R., Pathak, G. P., Gärtner, W., & Casal, J. J. (2013). LOV-domain photoreceptor, encoded in a genomic island, attenuates the virulence of Pseudomonas syringae in light-exposed Arabidopsis leaves. The Plant Journal, 76, 322–331.

    CAS  PubMed  Google Scholar 

  26. Río-Álvarez, I., Rodríguez-Herva, J. J., Martínez, P. M., González-Melendi, P., García-Casado, G., Rodríguez-Palenzuela, P., & López-Solanilla, E. (2014). Light regulates motility, attachment and virulence in the plant pathogen Pseudomonas syringae pv. tomato DC3000. Environmental Microbiology, 16, 2072–2085.

    Article  PubMed  Google Scholar 

  27. Ricci, A., Dramis, L., Shah, R., Gärtner, W., & Losi, A. (2015). Visualizing the relevance of bacterial blue- and red-light receptors during plant–pathogen interaction. Environmental Microbiology Reports, 7, 795–802.

    Article  CAS  PubMed  Google Scholar 

  28. Shah, R., Pathak, G., Drepper, T., & Gärtner, W. (2016). Selective photoreceptor gene knock-out reveals a regulatory role for the growth behavior of Pseudomonas syringae. Photochemistry and Photobiology, 92(4), 571–578. https://doi.org/10.1111/php.12610

    Article  CAS  PubMed  Google Scholar 

  29. Santamaría-Hernando, S., Rodríguez-Herva, J. J., Martínez-García, P. M., Río-Álvarez, I., González-Melendi, P., Zamorano, J., Tapia, C., Rodríguez-Palenzuela, P., & López-Solanilla, E. (2018). Pseudomonas syringae pv. tomato exploits light signals to optimize virulence and colonization of leaves. Environmental Microbiology, 20, 4261–4280.

    Article  PubMed  Google Scholar 

  30. Moyano, L., Lopéz-Fernández, M. P., Carrau, A., Nannini, J. M., Petrocelli, S., Orellano, E. G., & Maldonado, S. (2020). Red light delays programmed cell death in non-host interaction between Pseudomonas syringae pv. tomato DC3000 and tobacco plants. Plant Science, 291, 110361. https://doi.org/10.1016/j.plantsci.2019.110361

    Article  CAS  PubMed  Google Scholar 

  31. Wu, L., McGrane, R. S., & Beattie, G. A. (2013). Light regulation of swarming motility in Pseudomonas syringae integrates signaling pathways mediated by a bacteriophytochrome and a LOV protein. MBio, 4, 1–9.

    Article  Google Scholar 

  32. Mcgrane, R., & Beattie, G. A. (2017). Pseudomonas syringae pv. syringae B728a regulates multiple stages of plant colonization via the bacteriophytochrome BphP1. MBio, 8, 1–16.

    Article  Google Scholar 

  33. Rajalingam, N., & Lee, Y. H. (2018). Effects of green light on the gene expression and virulence of the plant pathogen Pseudomonas cichorii JBC1. European Journal of Plant Pathology, 150, 223–236.

    Article  CAS  Google Scholar 

  34. Almeida, N. F., Alves, L. M. C., Bertolini, M. C., Camargo, L. E. A., Camarotte, G., Cannavan, F., Cardozo, J., Chambergo, F., Ciapina, L. P., Cicarelli, R. M. B., Coutinho, L. L., Cursino-Santos, J. R., da Silva, A. C. R., de Souza, R. F., Do Amaral, A. M., El-Dorry, H., Farah, C. S., Faria, J. B., Ferreira, A. J. S., … White, F. F. (2002). Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature, 417, 459.

    Article  PubMed  Google Scholar 

  35. Finn, R. D., Coggill, P., Eberhardt, R. Y., Eddy, S. R., Mistry, J., Mitchell, A. L., Potter, S. C., Punta, M., Qureshi, M., Sangrador-Vegas, A., Salazar, G. A., Tate, J., & Bateman, A. (2016). The Pfam protein families database: Towards a more sustainable future. Nucleic Acids Research, 44, D279–D285.

    Article  CAS  PubMed  Google Scholar 

  36. Hunter, S., Apweiler, R., Attwood, T. K., Bairoch, A., Bateman, A., Binns, D., Bork, P., Das, U., Daugherty, L., Duquenne, L., Finn, R. D., Gough, J., Haft, D., Hulo, N., Kahn, D., Kelly, E., Laugraud, A., Letunic, I., Lonsdale, D., … Yeats, C. (2009). InterPro: The integrative protein signature database. Nucleic Acids Research, 37, 211–215.

    Article  Google Scholar 

  37. Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., & Sternberg, M. J. E. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 10, 845–858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Holm, L., & Rosenström, P. (2010). Dali server: conservation mapping in 3D. Nucleic Acids Research, 38, 545–549.

    Article  Google Scholar 

  39. Dhillon, B. K., Laird, M. R., Shay, J. A., Winsor, G. L., Lo, R., Nizam, F., Pereira, S. K., Waglechner, N., McArthur, A. G., Langille, M. G. I., & Brinkman, F. S. L. (2015). IslandViewer 3: More flexible, interactive genomic island discovery, visualization and analysis. Nucleic Acids Research, 43, W104–W108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kanehisa, M., & Goto, S. (2000). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 28, 27–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen, I. M. A., Chu, K., Palaniappan, K., Pillay, M., Ratner, A., Huang, J., Huntemann, M., Varghese, N., White, J. R., Seshadri, R., Smirnova, T., Kirton, E., Jungbluth, S. P., Woyke, T., Eloe-Fadrosh, E. A., Ivanova, N. N., & Kyrpides, N. C. (2019). IMG/M vol 5.0: An integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Research, 47, D666–D677.

    Article  CAS  PubMed  Google Scholar 

  42. Schäffer, A. A., Aravind, L., Madden, T. L., Shavirin, S., Spouge, J. L., Wolf, Y. I., Koonin, E. V., & Altschul, S. F. (2001). Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements. Nucleic Acids Research, 29, 2994–3005.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Boratyn, G. M., Camacho, C., Cooper, P. S., Coulouris, G., Fong, A., Ma, N., Madden, T. L., Matten, W. T., McGinnis, S. D., Merezhuk, Y., Raytselis, Y., Sayers, E. W., Tao, T., Ye, J., & Zaretskaya, I. (2013). BLAST: a more efficient report with usability improvements. Nucleic Acids Research, 41, 29–33.

    Article  Google Scholar 

  44. Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30, 772–780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Capella-Gutiérrez, S., Silla-Martínez, J. M., & Gabaldón, T. (2009). trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics, 25, 1972–1973.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Nguyen, L. T., Schmidt, H. A., Von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32, 268–274.

    Article  CAS  PubMed  Google Scholar 

  47. Minh, B. Q., Nguyen, M. A. T., & Von Haeseler, A. (2013). Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution, 30, 1188–1195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Soubrier, J., Steel, M., Lee, M. S. Y., Der Sarkissian, C., Guindon, S., Ho, S. Y. W., & Cooper, A. (2012). The influence of rate heterogeneity among sites on the time dependence of molecular rates. Molecular Biology and Evolution, 29, 3345–3358.

    Article  CAS  PubMed  Google Scholar 

  49. Daurelio, L. D., Tondo, M. L., Dunger, G., Gottig, N., Ottado, J., Orellano, E. G. (2009). Hypersensitive response. In Narwal, S. S., Sampietro, D. A., Vattuone, M. A., CatalÁn, C. A. N., Polyticka, B., (Ed.), Plant Bioassays. (pp. 187–206). Houston, TX: Studium Press, LLC. Section II. https://doi.org/10.1094/MPMI.1998.11.7.659

  50. Dunger, G., Relling, V. M., Tondo, M. L., Barreras, M., Ielpi, L., Orellano, E. G., & Ottado, J. (2007). Xanthan is not essential for pathogenicity in citrus canker but contributes to Xanthomonas epiphytic survival. Archives of Microbiology, 188, 127–135.

    Article  CAS  PubMed  Google Scholar 

  51. Wengelnik, K., Marie, C., Russel, M., & Bonas, U. (1996). Expression and localization of HrpA1, a protein of Xanthomonas campestris pv. vesicatoria essential for pathogenicity and induction of the hypersensitive reaction. Journal of Bacteriology, 178, 1061–1069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Stall, R. E., Marco, G. M., & Canteros, B. I. (2015). Cancrosis de los citrus: Proyecto cooperativo INTA-IFAS, 2015.

  53. Sambrook, J., Fitsch, E. F., & Maniatis, T. (1989). Molecular cloning: A laboratory manual (2nd ed.). Cold Spring Harbor Laboratory Press.

    Google Scholar 

  54. Kovach, M. E., Elzer, P. H., Hill, D. S., Robertson, G. T., Farris, M. A., Roop, R. M., & Peterson, K. M. (1995). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene, 166, 175–176.

    Article  CAS  PubMed  Google Scholar 

  55. Malamud, F., Conforte, V. P., Rigano, L. A., Castagnaro, A. P., Marano, M. R., Morais do Amaral, A., & Vojnov, A. A. (2012). HrpM is involved in glucan biosynthesis, biofilm formation and pathogenicity in Xanthomonas citri ssp. citri. Molecular Plant Pathology, 13, 1010–1018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sedmak, J. J., & Grossberg, S. (1977). A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250. Analytical Biochemistry, 79(1–2), 544–552.

    Article  CAS  PubMed  Google Scholar 

  57. Scandalios, J. G. (1968). Genetic control of multiple molecular forms of catalase in maize. Annals of the New York Academy of Sciences, 151, 274–293.

    Article  CAS  PubMed  Google Scholar 

  58. Bertelli, C., Laird, M. R., Williams, K. P., Lau, B. Y., Hoad, G., Winsor, G. L., & Brinkman, F. S. L. (2017). IslandViewer 4: Expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Research, 45, W30–W35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Parkinson, N., Cowie, C., Heeney, J., & Stead, D. (2009). Phylogenetic structure of Xanthomonas determined by comparison of gyrB sequences. International Journal of Systematic and Evolutionary Microbiology, 59, 264–274.

    Article  CAS  PubMed  Google Scholar 

  60. Bansal, K., Midha, S., Kumar, S., & Patil, P. B. (2017). Ecological and evolutionary insights into Xanthomonas citri pathovar diversity. Applied and Environmental Microbiology, 83, 1–17.

    Article  Google Scholar 

  61. Harshey, R. M. (2003). Bacterial motility on a surface: many ways to a common goal. Annual Review of Microbiology, 57, 249–273.

    Article  CAS  PubMed  Google Scholar 

  62. Katzen, F., Ferreiro, D. U., Oddo, C. G., Ielmini, M. V., Becker, A., Pühler, A., & Ielpi, L. (1998). Xanthomonas campestris pv. campestris gum mutants: effects on xanthan biosynthesis and plant virulence. Journal of Bacteriology, 180, 1607–1617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Petrocelli, S., Tondo, M. L., Daurelio, L. D., & Orellano, E. G. (2012). Modifications of Xanthomonas axonopodis pv. citri lipopolysaccharide affect the basal response and the virulence process during citrus canker. PLoS ONE, 7, e40051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Malamud, F., Homem, R. A., Conforte, V. P., Marcelo Yaryura, P., Castagnaro, A. P., Marano, M. R., do Amaral, A. M., & Vojnov, A. A. (2013). Identification and characterization of biofilm formation-defective mutants of Xanthomonas citri subsp. citri. Microbiology (United Kingdom), 159, 1911–1919.

    CAS  Google Scholar 

  65. Mah, T. F. C., & O’Toole, G. A. (2001). Mechanisms of biofilm resistance to antimicrobial agents. Trends in Microbiology, 9, 34–39.

    Article  CAS  PubMed  Google Scholar 

  66. Morris, C. E., & Monier, J. M. (2003). The ecological significance of biofilm formation by plant-associated bacteria. Annual review of Phytopathology, 41, 429–453.

    Article  CAS  PubMed  Google Scholar 

  67. Tondo, M. L., Petrocelli, S., Ottado, J., & Orellano, E. G. (2010). The monofunctional catalase kate of Xanthomonas axonopodis pv. citri is required for full virulence in citrus plants. PLoS ONE, 5, 1–11.

    Article  Google Scholar 

  68. Graham, J., Gottwald, T. R., Cubero, J., & Achor, D. (2004). Xanthomonas axonopodis pv. citri factors affecting successful. Molecular Plant Pathology, 5, 1–15.

    Article  PubMed  Google Scholar 

  69. Bitrian, M., González, R. H., Paris, G., Hellingwerf, K. J., & Nudel, C. B. (2013). Blue-light-dependent inhibition of twitching motility in Acinetobacter baylyi ADP1: Additive involvement of three BLUF-domain-containing proteins. Microbiology (United Kingdom), 159, 1828–1841.

    CAS  Google Scholar 

  70. Bonomi, H. R., Posadas, D. M., Paris, G., Del Carmen Carrica, M., Frederickson, M., Pietrasanta, L. I., Bogomolni, R. A., Zorreguieta, A., & Goldbaum, F. A. (2012). Light regulates attachment, exopolysaccharide production, and nodulation in Rhizobium leguminosarum through a LOV-histidine kinase photoreceptor. Proceedings of the National Academy of Sciences of the United States of America, 109, 12135–12140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Fujisawa, T., & Masuda, S. (2018). Light-induced chromophore and protein responses and mechanical signal transduction of BLUF proteins. Biophysical Reviews, 10, 327–337.

    Article  CAS  PubMed  Google Scholar 

  72. Hazra, P., Inoue, K., Laan, W., Hellingwerf, K. J., & Terazima, M. (2006). Tetramer formation kinetics in the signaling state of AppA monitored by time-resolved diffusion. Biophysical Journal, 91, 654–661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Nakasone, Y., Ono, T. A., Ishii, A., Masuda, S., & Terazima, M. (2007). Transient dimerization and conformational change of a BLUF protein: YcgF. Journal of the American Chemical Society, 129(22), 7028–7035. https://doi.org/10.1021/ja065682q

    Article  CAS  PubMed  Google Scholar 

  74. Unno, M., Sano, R., Masuda, S., Ono, T. A., & Yamauchi, S. (2005). Light-induced structural changes in the active site of the BLUF domain in AppA by Raman spectroscopy. Journal of Physical Chemistry, 109, 620–626.

    Article  Google Scholar 

  75. Kearns, D. B. (2010). A field guide to bacterial swarming motility. Nature Reviews Microbiology, 8, 634–644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tomaras, A. P., Dorsey, C. W., Edelmann, R. E., & Actis, L. A. (2003). Attachment to and biofilm formation on abiotic surfaces by Acinetobacter baumannii: involvement of a novel chaperone-usher pili assembly system. Microbiology, 149, 3473–3484.

    Article  CAS  PubMed  Google Scholar 

  77. Gaddy, J. A., Tomaras, A. P., & Actis, L. A. (2009). The Acinetobacter baumannii 19606 OmpA protein plays a role in biofilm formation on abiotic surfaces and in the interaction of this pathogen with eukaryotic cells. Infection and Immunity, 77, 3150–3160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Taguchi, F., Shibata, S., Suzuki, T., Ogawa, Y., Aizawa, S. I., Takeuchi, K., & Ichinose, Y. (2008). Effects of glycosylation on swimming ability and flagellar polymorphic transformation in Pseudomonas syringae pv. tabaci 6605. Journal of Bacteriology, 190, 764–768.

    Article  CAS  PubMed  Google Scholar 

  79. Gottig, N., Garavaglia, B. S., Daurelio, L. D., Valentine, A., Gehring, C., Orellano, E. G., & Ottado, J. (2008). Xanthomonas axonopodis pv. citri uses a plant natriuretic peptide-like protein to modify host homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 105, 18631–18636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Costerton, W., Lewandowski, Z., Caldwell, D. E., Korber, D. R., & Lappin-Scott, H. M. (1995). Microbial biofilms. Annual Review of Microbiology, 49, 711–745.

    Article  CAS  PubMed  Google Scholar 

  81. Branda, S. S., Vik, Å., Friedman, L., & Kolter, R. (2005). Biofilms: the matrix revisited. Trends in Microbiology, 13, 20–26.

    Article  CAS  PubMed  Google Scholar 

  82. Rigano, L. A., Siciliano, F., Enrique, R., Sendín, L., Filippone, P., Torres, P. S., Qüesta, J., Dow, J. M., Castagnaro, A. P., Vojnov, A. A., & Marano, M. R. (2007). Biofilm formation, epiphytic fitness, and canker development in Xanthomonas axonopodis pv. citri. Molecular Reproduction & Development, 20, 1222–1230.

    CAS  Google Scholar 

  83. Purcell, E. B., Siegal-Gaskins, D., Rawling, D. C., Fiebig, A., & Crosson, S. (2007). A photosensory two-component system regulates bacterial cell attachment. Proceedings of the National Academy of Sciences of the United States of America, 104, 18241–18246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kanazawa, T., Ren, S., Maekawa, M., Hasegawa, K., Arisaka, F., Hyodo, M., Hayakawa, Y., Ohta, H., & Masuda, S. (2010). Biochemical and physiological characterization of a BLUF protein-EAL protein complex involved in blue light-dependent degradation of cyclic diguanylate in the purple bacterium Rhodopseudomonas palustris. Biochemistry, 49, 10647–10655.

    Article  CAS  PubMed  Google Scholar 

  85. Otero, L. H., Klinke, S., Rinaldi, J., Velázquez-Escobar, F., Mroginski, M. A., Fernández López, M., Malamud, F., Vojnov, A. A., Hildebrandt, P., Goldbaum, F. A., & Bonomi, H. R. (2016). Structure of the full-length bacteriophytochrome from the plant pathogen Xanthomonas campestris provides clues to its long-range signaling mechanism. Journal of Molecular Biology, 428, 3702–3720.

    Article  CAS  PubMed  Google Scholar 

  86. Tondo, M. L., Delprato, M. L., Kraiselburd, I., Zenoff, M. V. F., Farías, M. E., & Orellano, E. G. (2016). KatG, the bifunctional catalase of Xanthomonas citri subsp. Citri, responds to hydrogen peroxide and contributes to epiphytic survival on citrus leaves. PLoS ONE, 11, 1–19.

    Article  Google Scholar 

  87. Tondo, M. L., Hurtado-Guerrero, R., Ceccarelli, E. A., Medina, M., Orellano, E. G., & Martínez-Júlvez, M. (2013). Crystal structure of the FAD-containing ferredoxin-NADP+ reductase from the plant pathogen Xanthomonas axonopodis pv. citri. BioMed Research International, 2013, 906572. https://doi.org/10.1155/2013/906572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the staff from the English Department of the Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR) for the language correction of the manuscript. We also thank Rodrigo Vena for assistance with the microscopy facility. This work was supported by grants from the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) (PICT2017-2242 to EGO) and Universidad Nacional de Rosario (UNR), (Grant N° 1BIO432) to EGO. AC and JT are fellows of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina), MBR is fellow of ANPCyT; SP and EGO are staff member of Consejo de Investigaciones UNR (CIUNR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Graciela Orellano.

Ethics declarations

Conflict of interest

On behalf of all the authors, the corresponding author state that there is no conflicts of interest.

Additional information

This publication is dedicated to Prof. Silvia E. Braslavsky, a pioneer in photobiology and photobiophysics, on the occasion of her 80th birthday.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 KB)

Supplementary file2 (DOCX 17 KB)

43630_2023_420_MOESM3_ESM.tif

Supplementary file3Figure S1. Construction of X. citri pv. citri XccΔbluf2 strain. Steps for the generation of XccΔbluf2 mutant strain using the suicide plasmid pKMobGII to replace the Xcc bluf2 gene with a Sm/Sp-resistance cassette (TIF 1926 KB)

43630_2023_420_MOESM4_ESM.png

Supplementary file4Figure S2. Bacterial growth curves in liquid SB medium. Saturated cultures of Xcc WT, XccΔbluf2 and cXccΔbluf2 strains were subcultured into fresh SB medium at 2% (v/v) inocula. Bacterial growth curves at 28 ºC were obtained taking aliquots of cells suspension at different times growing under different light conditions. We measured the OD600 in (A) White light, (B) Blue light and in (C) Darkness, and the CFU/mL in (D) White light, (E) Blue light and in (F) Darkness, as a function of time. Data are represented as the mean ± standard error of two independent biological samples (PNG 94 KB)

43630_2023_420_MOESM5_ESM.png

Supplementary file5Figure S3. Expression levels of Xcc bluf2 gene in the plant-mimicking XVM2 medium growth under different light conditions. (A) Amplified products of the bluf2 gene by semiquantitative RT-PCR using RNA preparations from Xcc WT (1), XccΔbluf2 (2) and cXccΔbluf2 (3) cultures grown in XVM2 under white light, blue light and dark conditions for 6 hours. As a control for constitutive bacterial expression a fragment of rpoB gene was simultaneously amplified. (B) Expression profiles obtained by densitometric quantification of bluf2 band intensities normalized with rpoB band intensities. Integrated optical density (IOD), arbitrary units (A.U) (PNG 413 KB)

43630_2023_420_MOESM6_ESM.png

Supplementary file6Figure S4. Flagella analysis. Flagella of Xcc WT and XccΔbluf2 were observed by TEM. Bacteria were obtained from the border of swarming plates incubated under white light, blue light or darkness. Arrows indicate bacterial flagella. The results are representative of three independent experiments (PNG 737 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carrau, A., Tano, J., Moyano, L. et al. A novel BLUF photoreceptor modulates the Xanthomonas citri subsp. citri–host plant interaction. Photochem Photobiol Sci 22, 1901–1918 (2023). https://doi.org/10.1007/s43630-023-00420-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-023-00420-6

Keywords

Navigation