Skip to main content
Log in

Solar photodegradation of irinotecan in water: optimization and robustness studies by experimental design

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Irinotecan, a widely prescribed anticancer drug, is an emerging contaminant of concern that has been detected in various aquatic environments due to ineffective removal by traditional wastewater treatment systems. Solar photodegradation is a viable approach that can effectively eradicate the drug from aqueous systems. In this study, we used the design of experiment (DOE) approach to explore the robustness of irinotecan photodegradation under simulated solar irradiation. A full factorial design, including a star design, was applied to study the effects of three parameters: initial concentration of irinotecan (1.0–9.0 mg/L), pH (5.0–9.0), and irradiance (450–750 W/m2). A high-performance liquid chromatography coupled with a high-resolution mass spectrometry (HPLC–HRMS) system was used to determine irinotecan and identify transformation products. The photodegradation of irinotecan followed a pseudo-first order kinetics. In the best-fitted linear model determined by the stepwise model fitting approach, pH was found to have about 100-fold greater effect than either irinotecan concentration or solar irradiance. Under optimal conditions (irradiance of 750 W/m2, 1.0 mg/L irinotecan concentration, and pH 9.0), more than 98% of irinotecan was degraded in 60 min. With respect to irradiance and irinotecan concentration, the degradation process was robust in the studied range, implying that it may be effectively applied in locations and/or seasons with solar irradiance as low as 450 W/m2. However, pH needs to be strictly controlled and kept between 7.0 and 9.0 to maintain the degradation process robust. Considerations about the behavior of degradation products were also drawn.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available in the supporting information of this article.

References

  1. Golovko, O., Örn, S., Sörengård, M., Frieberg, K., Nassazzi, W., Lai, F. Y., & Ahrens, L. (2021). Occurrence and removal of chemicals of emerging concern in wastewater treatment plants and their impact on receiving water systems. Science of The Total Environment, 754, 142122. https://doi.org/10.1016/j.scitotenv.2020.142122

    Article  CAS  PubMed  Google Scholar 

  2. Iervolino, G., Zammit, I., Vaiano, V., & Rizzo, L. (2020). Limitations and prospects for wastewater treatment by UV and visible-light-active heterogeneous photocatalysis: a critical review. Heterogeneous Photocatalysis. https://doi.org/10.1007/978-3-030-49492-6_7

    Article  Google Scholar 

  3. Papagiannaki, D., Morgillo, S., Bocina, G., Calza, P., & Binetti, R. (2021). Occurrence and human health risk assessment of pharmaceuticals and hormones in drinking water sources in the metropolitan area of Turin in Italy. Toxics, 9(4), 88. https://doi.org/10.3390/toxics9040088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. AQUAlity (2017). Interdisciplinar cross-sectoral approach to effectively address the removal of contaminants of emerging concern from water (grant agreement ID: 765860). https://cordis.europa.eu/project/id/765860

  5. Besse, J. P., Latour, J. F., & Garric, J. (2012). Anticancer drugs in surface waters: what can we say about the occurrence and environmental significance of cytotoxic, cytostatic and endocrine therapy drugs? Environment International, 39(1), 73–86. https://doi.org/10.1016/j.envint.2011.10.002

    Article  CAS  PubMed  Google Scholar 

  6. Wouters, O. J., Kanavos, P. G., & McKee, M. (2017). Comparing generic drug markets in Europe and the United States: Prices, volumes, and spending. The Milbank Quarterly, 95(3), 554–601. https://doi.org/10.1111/1468-0009.12279

    Article  PubMed  PubMed Central  Google Scholar 

  7. Slatter, J. G., Schaaf, L. J., Sams, J. P., Feenstra, K. L., Johnson, M. G., Bombardt, P. A., & Lord, R. S. (2000). Pharmacokinetics, metabolism, and excretion of irinotecan (CPT-11) following I.V. infusion of [14C] CPT-11 in cancer patients. Drug Metabolism and Disposition., 28(4), 423–433.

    CAS  PubMed  Google Scholar 

  8. Souza, D. M., Reichert, J. F., & Martins, A. F. (2018). A simultaneous determination of anti-cancer drugs in hospital effluent by DLLME HPLC-FLD, together with a risk assessment. Chemosphere, 201, 178–188. https://doi.org/10.1016/j.chemosphere.2018.02.164

    Article  CAS  PubMed  Google Scholar 

  9. Gómez-Canela, C., Ventura, F., Caixach, J., & Lacorte, S. (2014). Occurrence of cytostatic compounds in hospital effluents and wastewaters, determined by liquid chromatography coupled to high-resolution mass spectrometry. Analytical and Bioanalytical Chemistry, 406(16), 3801–3814. https://doi.org/10.1007/s00216-014-7805-9

    Article  CAS  PubMed  Google Scholar 

  10. Ferre-Aracil, J., Valcárcel, Y., Negreira, N., de Alda, M. L., Barceló, D., Cardona, S. C., & Navarro-Laboulais, J. (2016). Ozonation of hospital raw wastewaters for cytostatic compounds removal. Kinetic modelling and economic assessment of the process. Science of The Total Environment, 556, 70–79. https://doi.org/10.1016/j.scitotenv.2016.02.202

    Article  CAS  PubMed  Google Scholar 

  11. Olalla, A., Negreira, N., de Alda, M. L., Barceló, D., & Valcárcel, Y. (2018). A case study to identify priority cytostatic contaminants in hospital effluents. Chemosphere, 190, 417–430. https://doi.org/10.1016/j.chemosphere.2017.09.129

    Article  CAS  PubMed  Google Scholar 

  12. Schlabach M, Dye C, Kaj L, Klausen S, Langford K, Leknes H, Vogelsang C (2009) Environmental screening of selected organic compounds 2008. Human and hospital-use pharmaceuticals, aquaculture medicines and personal care products. NILU OR.

  13. Isidori, M., Lavorgna, M., Russo, C., Kundi, M., Žegura, B., Novak, M., & Heath, E. (2016). Chemical and toxicological characterisation of anticancer drugs in hospital and municipal wastewaters from Slovenia and Spain. Environmental Pollution, 219, 275–287. https://doi.org/10.1016/j.envpol.2016.10.039

    Article  CAS  PubMed  Google Scholar 

  14. Gosetti, F., Belay, M. H., Marengo, E., & Robotti, E. (2020). Development and validation of a UHPLC-MS/MS method for the identification of irinotecan photodegradation products in water samples. Environmental Pollution, 256, 113370. https://doi.org/10.1016/j.envpol.2019.113370

    Article  CAS  PubMed  Google Scholar 

  15. Chatzimpaloglou, Α, Christophoridis, C., Fountoulakis, I., Antonopoulou, M., Vlastos, D., Bais, A., & Fytianos, K. (2021). Photolytic and photocatalytic degradation of antineoplastic drug irinotecan. Kinetic study, identification of transformation products and toxicity evaluation. Chemical Engineering Journal., 405, 126866. https://doi.org/10.1016/j.cej.2020.126866

    Article  CAS  Google Scholar 

  16. Brienza, M., Özkal, C. B., & Li Puma, G. (2018). Photo (Catalytic) oxidation processes for the removal of natural organic matter and contaminants of emerging concern from water. Applications of Advanced Oxidation Processes (AOPs) in Drinking Water Treatment. https://doi.org/10.1007/698_2017_189

    Article  Google Scholar 

  17. Gonçalves, N. P., Iezzi, L., Belay, M. H., Dulio, V., Alygizakis, N., Dal Bello, F., & Calza, P. (2021). Elucidation of the photoinduced transformations of Aliskiren in river water using liquid chromatography high-resolution mass spectrometry. Science of the Total Environment, 800, 149547. https://doi.org/10.1016/j.scitotenv.2021.149547

    Article  CAS  PubMed  Google Scholar 

  18. Jiménez, S., Andreozzi, M., Micó, M. M., Álvarez, M. G., & Contreras, S. (2019). Produced water treatment by advanced oxidation processes. Science of the Total Environment, 666, 12–21. https://doi.org/10.1016/j.scitotenv.2019.02.128

    Article  CAS  PubMed  Google Scholar 

  19. Deng, Y., & Zhao, R. (2015). Advanced oxidation processes (AOPs) in wastewater treatment. Current Pollution Reports, 1(3), 167–176. https://doi.org/10.1007/s40726-015-0015-z

    Article  CAS  Google Scholar 

  20. Amor, C., Marchão, L., Lucas, M. S., & Peres, J. A. (2019). Application of advanced oxidation processes for the treatment of recalcitrant agro-industrial wastewater: a review. Water, 11(2), 205. https://doi.org/10.3390/w11020205

    Article  CAS  Google Scholar 

  21. Polo-López, M. I., Nahim-Granados, S., & Fernández-Ibáñez, P. (2018). Homogeneous Fenton and photo-Fenton disinfection of surface and groundwater. Applications of Advanced Oxidation Processes (AOPs) in Drinking Water Treatment. https://doi.org/10.1007/698_2017_129

    Article  Google Scholar 

  22. Sakkas, V. A., Islam, M. A., Stalikas, C., & Albanis, T. A. (2010). Photocatalytic degradation using design of experiments: a review and example of the Congo red degradation. Journal of Hazardous Materials, 175(1–3), 33–44. https://doi.org/10.1016/j.jhazmat.2009.10.050

    Article  CAS  PubMed  Google Scholar 

  23. Ferreira, S. L., Caires, A. O., Borges, T. D. S., Lima, A. M., Silva, L. O., & dos Santos, W. N. (2017). Robustness evaluation in analytical methods optimized using experimental designs. Microchemical Journal, 131, 163–169. https://doi.org/10.1016/j.microc.2016.12.004

    Article  CAS  Google Scholar 

  24. Barth, A. B., De Oliveira, G. B., Malesuik, M. D., Paim, C. S., & Volpato, N. M. (2011). Stability-indicating LC assay for butenafine hydrochloride in creams using an experimental design for robustness evaluation and photodegradation kinetics study. Journal of Chromatographic Science, 49(7), 512–518. https://doi.org/10.1093/chrsci/49.7.512

    Article  CAS  PubMed  Google Scholar 

  25. Gnanaprakasam, A., Sivakumar, V. M., & Thirumarimurugan, M. (2015). Influencing parameters in the photocatalytic degradation of organic effluent via nanometal oxide catalyst: a review. Indian Journal of Materials Science. https://doi.org/10.1155/2015/601827

    Article  Google Scholar 

  26. Gao, X., Guo, Q., Tang, G., Peng, W., Luo, Y., & He, D. (2019). Effects of inorganic ions on the photocatalytic degradation of carbamazepine. Journal of Water Reuse and Desalination, 9(3), 301–309. https://doi.org/10.2166/wrd.2019.001

    Article  CAS  Google Scholar 

  27. Klavarioti, M., Mantzavinos, D., & Kassinos, D. (2009). Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environment International, 35(2), 402–417. https://doi.org/10.1016/j.envint.2008.07.009

    Article  CAS  PubMed  Google Scholar 

  28. Ayodele, B. V., Alsaffar, M. A., Mustapa, S. I., & Vo, D. V. N. (2020). Backpropagation neural networks modelling of photocatalytic degradation of organic pollutants using TiO2-based photocatalysts. Journal of Chemical Technology & Biotechnology, 95(10), 2739–2749. https://doi.org/10.1002/jctb.6407

    Article  CAS  Google Scholar 

  29. Tang, K., Casas, M. E., Ooi, G. T., Kaarsholm, K. M., Bester, K., & Andersen, H. R. (2017). Influence of humic acid addition on the degradation of pharmaceuticals by biofilms in effluent wastewater. International Journal of Hygiene and Environmental Health, 220(3), 604–610. https://doi.org/10.1016/j.ijheh.2017.01.003

    Article  CAS  PubMed  Google Scholar 

  30. Mašković, M., Jančić-Stojanović, B., Malenović, A., Ivanović, D., & Medenica, M. (2010). Assessment of liquid chromatographic method robustness by use of Plackett-Burman design. Acta Chromatographica, 22(2), 281–296. https://doi.org/10.1556/achrom.22.2010.2.10

    Article  Google Scholar 

  31. Dejaegher, B., Dumarey, M., Capron, X., Bloomfield, M. S., & Vander Heyden, Y. (2007). Comparison of Plackett-Burman and supersaturated designs in robustness testing. Analytica Chimica Acta, 595(1–2), 59–71. https://doi.org/10.1016/j.aca.2006.11.077

    Article  CAS  PubMed  Google Scholar 

  32. Box, G. E., Hunter, W. H., & Hunter, S. (1978). Statistics for experimenters (Vol. 664). John Wiley and sons.

    Google Scholar 

  33. Katsoni, A., Gomes, H. T., Pastrana-Martínez, L. M., Faria, J. L., Figueiredo, J. L., Mantzavinos, D., & Silva, A. M. (2011). Degradation of trinitrophenol by sequential catalytic wet air oxidation and solar TiO2 photocatalysis. Chemical Engineering Journal, 172(2–3), 634–640. https://doi.org/10.1016/j.cej.2011.06.022

    Article  CAS  Google Scholar 

  34. Kuo, W. S., & Wu, C. L. (2012). Treatment of color filter wastewater by fresnel lens enhanced solar photo-Fenton process. Advances in Materials Science and Engineering. https://doi.org/10.1155/2012/679206

    Article  Google Scholar 

  35. Weber, J., Halsall, C. J., Wargent, J. J., & Paul, N. D. (2009). A comparative study on the aqueous photodegradation of two organophosphorus pesticides under simulated and natural sunlight. Journal of Environmental Monitoring, 11(3), 654–659. https://doi.org/10.1039/B811387D

    Article  CAS  PubMed  Google Scholar 

  36. Fraser, T. R., Ross, K. E., Alexander, U., & Lenehan, C. E. (2022). Current knowledge of the degradation products of tattoo pigments by sunlight, laser irradiation and metabolism: a systematic review. Journal of Exposure Science & Environmental Epidemiology, 32(3), 343–355. https://doi.org/10.1038/s41370-021-00364-y

    Article  Google Scholar 

  37. Kotthoff, L., O’Callaghan, S. L., Lisec, J., Schwerdtle, T., & Koch, M. (2020). Structural annotation of electro-and photochemically generated transformation products of moxidectin using high-resolution mass spectrometry. Analytical and bioanalytical chemistry, 412(13), 3141–3152. https://doi.org/10.1007/s00216-020-02572-1

    Article  CAS  PubMed  Google Scholar 

  38. Dal Bello, F., Mecarelli, E., Aigotti, R., Davoli, E., Calza, P., & Medana, C. (2022). Development and application of high resolution mass spectrometry analytical method to study and identify the photoinduced transformation products of environmental pollutants. Journal of Environmental Management, 308, 114573. https://doi.org/10.1016/j.jenvman.2022.114573

    Article  CAS  Google Scholar 

  39. Schymanski, E. L., Jeon, J., Gulde, R., Fenner, K., Ruff, M., Singer, H. P., & Hollender, J. (2014). Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environmental Science and Technology, 48(4), 2097–2098. https://doi.org/10.1021/es5002105

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This paper is part of a project that has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grant Agreement No 765860 (AQUAlity).

Author information

Authors and Affiliations

Authors

Contributions

MHB: investigation, methodology, formal analysis, writing—original draft preparation, and writing—review and editing. FDB: data curation, formal analysis, and writing—review and editing. EM: conceptualization, software, writing—review and editing, and funding acquisition. DF: TOC analysis and writing—review and editing. CM: methodology, validation, writing—review and editing, and supervision. ER: conceptualization, software, writing—review and editing, supervision, and funding acquisition.

Corresponding author

Correspondence to Federica Dal Bello.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7583 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belay, M.H., Dal Bello, F., Marengo, E. et al. Solar photodegradation of irinotecan in water: optimization and robustness studies by experimental design. Photochem Photobiol Sci 22, 761–772 (2023). https://doi.org/10.1007/s43630-022-00350-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-022-00350-9

Keywords

Navigation