Skip to main content
Log in

Keeping the name clean: [2 + 2] photocycloaddition

  • Perspectives
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Crossed [2 + 2] photocycloaddition is a specific case of intramolecular photocycloaddition reaction. Recently, the term “crossed [2 + 2] photocycloaddition” is interchangeably used to represent intermolecular [2 + 2] photocycloaddition reactions of two dissimilar double bonds/alkenes. To avoid confusion and to help researchers use the correct terminologies, this perspective clarifies the terminology used for different [2 + 2] photocycloaddition processes based on prior literature with the hope of establishing a standard for addressing the diverse set of photocycloaddition reactions that will be helpful to the chemical community.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Scheme 4:
Scheme 5:
Scheme 6

Similar content being viewed by others

References

  1. Turro, N. J., Ramamurthy, V., & Scaiano, J. C. (2010). Photochemistry of olefins. In Modern molecular photochemistry of organic molecules (p. 759). University Science Books

  2. Poplata, S., Tröster, A., Zou, Y.-Q., & Bach, T. (2016). Recent advances in the synthesis of cyclobutanes by olefin [2 + 2] photocycloaddition reactions. Chemical Reviews, 116, 9748–9815. https://doi.org/10.1021/acs.chemrev.5b00723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ramamurthy, V., & Sivaguru, J. (2016). Supramolecular photochemistry as a potential synthetic tool: Photocycloaddition. Chemical Reviews, 116, 9914–9993. https://doi.org/10.1021/acs.chemrev.6b00040

    Article  CAS  PubMed  Google Scholar 

  4. Corey, E. J., Bass, J. D., LeMahieu, R., & Mitra, R. B. (1964). A study of the photochemical reactions of 2-cyclohexenones with substituted olefins. Journal of the American Chemical Society, 86, 5570–5583. https://doi.org/10.1021/ja01078a034

    Article  CAS  Google Scholar 

  5. Bauslaugh, P. G. (1970). Photochemical cycloaddition reactions of enones to alkenes; synthetic applications. Synthesis, 1970, 287–300.

    Article  Google Scholar 

  6. Eaton, P. E. (1962). On the mechanism of the photodimerization of cyclopentenone. Journal of the American Chemical Society, 84, 2454–2455. https://doi.org/10.1021/ja00871a039

    Article  CAS  Google Scholar 

  7. Hammond, G. S., Stout, C. A., & Lamola, A. A. (1964). Mechanisms of photochemical reactions in solution. XXV. The photodimerization of coumarin. Journal of the American Chemical Society, 86, 3103–3106. https://doi.org/10.1021/ja01069a026

    Article  CAS  Google Scholar 

  8. Morrison, H. A., Curtis, H., & McDowell, T. (1966). Solvent effects on the photodimerization of coumarin. Journal of the American Chemical Society, 88, 5415–5419.

    Article  CAS  Google Scholar 

  9. Muthuramu, K., & Ramamurthy, V. (1982). Photodimerization of coumarin in aqueous and micellar media. Journal of Organic Chemistry, 47, 3976–3979. https://doi.org/10.1021/jo00141a035

    Article  CAS  Google Scholar 

  10. Moorthy, J. N., Venkatesan, K., & Weiss, R. G. (1992). Photodimerization of coumarins in solid cyclodextrin inclusion complexes. Journal of Organic Chemistry, 57, 3292–3297.

    Article  CAS  Google Scholar 

  11. Blum, T. R., Miller, Z. D., Bates, D. M., Guzei, I. A., & Yoon, T. P. (2016). Enantioselective photochemistry through Lewis acid-catalyzed triplet energy transfer. Science, 354, 1391–1395. https://doi.org/10.1126/science.aai8228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hörmann, F. M., Chung, T. S., Rodriguez, E., Jakob, M., & Bach, T. (2018). Evidence for triplet sensitization in the visible-light-induced [2 + 2] photocycloaddition of eniminium ions. Angewandte Chemie International Edition, 57, 827–831. https://doi.org/10.1002/anie.201710441

    Article  CAS  PubMed  Google Scholar 

  13. Ahuja, S., Raghunathan, R., Kumarasamy, E., Jockusch, S., & Sivaguru, J. (2018). Realizing the photoene reaction with alkenes under visible light irradiation and bypassing the favored [2 + 2]-photocycloaddition. Journal of the American Chemical Society, 140, 13185–13189. https://doi.org/10.1021/jacs.8b08100

    Article  CAS  PubMed  Google Scholar 

  14. Srinivasan, R., & Carlough, K. H. (1967). Mercury(3P1) photosensitized internal cycloaddition reactions in 1,4-, 1,5-, and 1,6-dienes. Journal of the American Chemical Society, 89, 4932–4936. https://doi.org/10.1021/ja00995a018

    Article  CAS  Google Scholar 

  15. Liu, R. S. H., & Hammond, G. S. (1967). Photosensitized internal addition of dienes to olefins. Journal of the American Chemical Society, 89, 4936–4944. https://doi.org/10.1021/ja00995a019

    Article  CAS  Google Scholar 

  16. Wiesner, K., Musil, V., & Wesner, K. J. (1968). Syntheses in the series of lycopodium alkaloids. IX. Two simple stereospecific syntheses of 12-epi-lycopodine. Tetrahedron Letters, 9, 5643–5646. https://doi.org/10.1016/S0040-4039(00)70741-6

    Article  Google Scholar 

  17. Brown, M. (1965). The photocyclization of an acyclic bis-unsaturated carbonyl system. Chemical Communications. https://doi.org/10.1039/C19650000340

    Article  Google Scholar 

  18. Kumarasamy, E., & Sivaguru, J. (2013). Light-induced stereospecific intramolecular [2 + 2]-cycloaddition of atropisomeric 3,4-dihydro-2-pyridones. Chemical Communications, 49, 4346–4348. https://doi.org/10.1039/C2CC37123E

    Article  CAS  PubMed  Google Scholar 

  19. Gravatt, C. S., Melecio-Zambrano, L., & Yoon, T. P. (2021). Olefin-supported cationic copper catalysts for photochemical synthesis of structurally complex cyclobutanes. Angewandte Chemie International Edition, 60, 3989–3993. https://doi.org/10.1002/anie.202013067

    Article  CAS  PubMed  Google Scholar 

  20. Srinivasan, R. (1963). Mercury photosensitized isomerization of 1,5-cycloöctadiene to tricyclo [3.3.0.02,6] octane. Journal of the American Chemical Society, 85, 819–820. https://doi.org/10.1021/ja00889a039

    Article  CAS  Google Scholar 

  21. Tamura, Y., Kita, Y., Ishibashi, H., & Ikeda, M. (1971). Intramolecular photocycloaddition of 3-allyloxy- and 3-allylamino-cyclohex-2-enones: Formation of oxa- and aza-bicyclo[2,1,1]hexanes. Journal of the Chemical Society, Chemical Communications. https://doi.org/10.1039/C29710001167

    Article  Google Scholar 

  22. Iyer, A., Jockusch, S., & Sivaguru, J. (2014). Dictating photoreactivity through restricted bond rotations: Cross-photoaddition of atropisomeric acrylimide derivatives under UV/visible-light irradiation. Journal of Physical Chemistry A, 118, 10596–10602. https://doi.org/10.1021/jp505678b

    Article  CAS  PubMed  Google Scholar 

  23. Zhao, J., Brosmer, J. L., Tang, Q., Yang, Z., Houk, K. N., Diaconescu, P. L., & Kwon, O. (2017). Intramolecular crossed [2+2] photocycloaddition through visible light-induced energy transfer. Journal of the American Chemical Society, 139, 9807–9810. https://doi.org/10.1021/jacs.7b05277

    Article  CAS  PubMed  Google Scholar 

  24. Bach, T., Bergmann, H., & Harms, K. (2000). Enantioselective intramolecular [2 + 2]-photocycloaddition reactions in solution. Angewandte Chemie International Edition, 39, 2302–2304. https://doi.org/10.1002/1521-3773(20000703)39:13%3c2302::AID-ANIE2302%3e3.0.CO;2-6

    Article  CAS  PubMed  Google Scholar 

  25. Rigotti, T., Schwinger, D. P., Graßl, R., Jandl, C., & Bach, T. (2022). Enantioselective crossed intramolecular [2+2] photocycloaddition reactions mediated by a chiral chelating Lewis acid. Chemical Science, 13, 2378–2384. https://doi.org/10.1039/D2SC00113F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gleiter, R., & Sander, W. (1985). Light-induced [2 + 2] cycloaddition reactions of nonconjugated dienes—the effect of through-bond interaction. Angewandte Chemie International Edition, 24, 566–568. https://doi.org/10.1002/anie.198505661

    Article  Google Scholar 

  27. Bradley, S. A., Bresnan, B. J., Draper, S. M., Geraghty, N. W. A., Jeffares, M., McCabe, T., McMurry, T. B. H., & O’Brien, J. E. (2011). Photochemical [2 + 2] cycloaddition reactions of 6-alkenyl-3-phenylcyclohex-2-en-1-ones: Using biradical conformation control to account for exceptions to the “rule of five.” Organic & Biomolecular Chemistry, 9, 2959–2968. https://doi.org/10.1039/C0OB01131B

    Article  CAS  Google Scholar 

  28. Dilling, W. L. (1966). Intramolecular photochemical cycloaddition of nonconjugated olefins. Chemical Reviews, 66, 373–393. https://doi.org/10.1021/cr60242a002

    Article  CAS  Google Scholar 

  29. Alder, A., Bühler, N., & Bellus, D. (1982). A note on intramolecular photochemical cycloaddition of N-substituted dimethacrylimides. Helvetica Chimica Acta, 65, 2405–2412. https://doi.org/10.1002/hlca.19820650805

    Article  CAS  Google Scholar 

  30. Ahuja, S., Iyer, A., Kandappa, S. K., & Sivaguru, J. (2019). Photo-auxiliary approach to control excited state reactivity: Cross [2+2]-photocycloaddition of oxazolidinone based hydrazides. Journal of Photochemistry and Photobiology Sciences: A Chemistry, 382, 111883. https://doi.org/10.1016/j.jphotochem.2019.111883

    Article  CAS  Google Scholar 

  31. Turnbull, A. G., & Hull, H. S. (1968). A thermodynamic study of the dimerization of cyclopentadiene. Australian Journal of Chemistry, 21, 1789–1797.

    Article  CAS  Google Scholar 

  32. Krupka, J. (2015). Kinetics of Diels–Alder reactions between 1,3-cyclopentadiene and isoprene. Reaction Kinetics, Mechanisms and Catalysis, 116, 315–326. https://doi.org/10.1007/s11144-015-0913-5

    Article  CAS  Google Scholar 

  33. Xu, R., Jocz, J. N., Wiest, L. K., Sarngadharan, S. C., Milina, M., Coleman, J. S., Iaccino, L. L., Pollet, P., Sievers, C., & Liotta, C. L. (2019). Cyclopentadiene dimerization kinetics in the presence of c5 alkenes and alkadienes. Industrial and Engineering Chemistry Research, 58, 22516–22525. https://doi.org/10.1021/acs.iecr.9b04018

    Article  CAS  Google Scholar 

  34. Griffin, G., & Heep, U. (1970). The [2 + 2] photocycloadditions of indene and 2-and 3-chloroindenes. Journal of Organic Chemistry, 35, 4222–4224. https://doi.org/10.1021/jo00837a614

    Article  CAS  Google Scholar 

  35. Xie, X., Pan, H., Zhou, T.-P., Han, M.-Y., Wang, L., Geng, X., Ma, Y., Liao, R.-Z., Wang, Z.-M., Yang, J., & Li, P. (2021). Ortho-ethynyl group assisted regioselective and diastereoselective [2 + 2] cross-photocycloaddition of alkenes under photocatalyst-, additive-, and solvent-free conditions. Organic Chemistry Frontiers, 8, 5872–5887. https://doi.org/10.1039/D1QO01017D

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the US National Science foundation (CHE-1955524 for JS and CHE-1807729 for VR), the German Science Foundation (TB) and the European Research Council (TB) for funding their respective research programs in which various [2+2] photocycloaddition strategies have been investigated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jayaraman Sivaguru, Thorsten Bach or Vaidhyanathan Ramamurthy.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivaguru, J., Bach, T. & Ramamurthy, V. Keeping the name clean: [2 + 2] photocycloaddition. Photochem Photobiol Sci 21, 1333–1340 (2022). https://doi.org/10.1007/s43630-022-00239-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-022-00239-7

Navigation