Skip to main content
Log in

Intramolecular photo-driven charge transfer in a series of pyridyl substituted phenyloxazoles. Structural relaxation in meta-substituted ethylpyridinium derivative of phenyloxazole

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A series of pyridyl (pyridinium) substituted benzoxazoles were studied by steady state absorption, fluorescence spectroscopy, time-resolved fluorescence spectroscopy, fs pulse absorption and polarization spectroscopy, and quantum–chemical calculations. The spectral and kinetic parameters of the fluorophores in MeCN and EtOAc were obtained experimentally and were calculated by means of DFT and TDDFT methods. A scheme including four transient excited states was proposed for the interpretation of differential absorption kinetics of the charged fluorophores. Expressions describing the actual kinetics graphs, the decay associated spectra, and the species-associated spectra were derived. The charge shift step was found to be dependent on average solvation times. A charge shift followed by the formation of the twisted conformer was found for the excited 1-ethyl-3-(5-phenyloxazol-2-yl)pyridinium 4-methyl-1-benzenesulfonate in MeCN and EtOAc. Conformational analysis confirms a large amplitude motion of the meta-substituted ethylpyridinium group as an additional structural relaxation path producing an abnormally large fluorescence Stokes shift.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7
Scheme 2

Similar content being viewed by others

References

  1. Druzhinin, S. I., Krashakov, S. A., Troyanovsky, I. V., & Uzhinov, B. M. (1987). Excited state proton transfer in 2-heteroaryloxazoles. The principle of least photochemical motion. Chemical Physics, 116, 231–239. https://doi.org/10.1016/0301-0104(87)80085-X

    Article  CAS  Google Scholar 

  2. Doroshenko, A. O. (2002). Physicochemical principles of the creation of highly efficient organic luminophores with anomalously high Stokes shifts. Theoretical and Experimental Chemistry, 38(3), 135–155. https://doi.org/10.1023/A:1019696700763

    Article  CAS  Google Scholar 

  3. del Valle, J. C., Kasha, M., & Catalán, J. (1997). Spectroscopy of amplified spontaneous emission laser spikes in phenyloxazoles. Prototype classes. The Journal of Physical Chemistry A, 101(18), 3260–3272. https://doi.org/10.1021/jp9633299

    Article  Google Scholar 

  4. Uzhinov, B. M., & Druzhinin, S. I. (1998). Excited state proton transfer lasers. Russian Chemical Reviews, 67(2), 123–136. https://doi.org/10.1070/RC1998v067n02ABEH000257

    Article  Google Scholar 

  5. Doroshenko, A. O., Kirichenko, A. V., Mitina, V. G., & Ponomaryev, O. A. (1996). Spectral properties and dynamics of the excited state structural relaxation of the ortho analogues of POPOP—effective abnormally large Stokes shift luminophores. Journal of Photochemistry and Photobiology A: Chemistry, 94, 15–26. (SSDI 1010-6030(95)04203-2).

    Article  CAS  Google Scholar 

  6. Ponomarenko, S. A., Surin, N. M., Borshchev, O. V., Skorotetcky, M. S., & Muzafarov, A. M. (2015). Nanostructured organosilicon luminophores as a new concept of nanomaterials for highly efficient down-conversion of light. Proceedings of SPIE, 9545, 95450. https://doi.org/10.1117/12.2187281

    Article  Google Scholar 

  7. Stsiapura, V. I., Maskevich, A. A., Tikhomirov, S. A., & Buganov, O. V. (2010). Charge transfer process determines ultrafast excited state deactivation of Thioflavin T in low-viscosity solvents. Physical Chemistry A, 114, 8345–8350. https://doi.org/10.1021/jp105186z

    Article  CAS  Google Scholar 

  8. Volchkov, V. V., Hui Bon Hoa, G., Kossanyi, J. A., Gromov, S. P., Alfimov, M. V., & Uzhinov, B. M. (2005). Intramolecular structural relaxation in excited hetarylazole cations. Journal of Physical Organic Chemistry, 18, 21–25. https://doi.org/10.1002/poc.806

    Article  CAS  Google Scholar 

  9. Demas, J. N., & Crosby, G. A. (1971). The measurement of photoluminescence quantum yields: A review. Physical Chemistry, 75, 991. https://doi.org/10.1021/j100678a001

    Article  Google Scholar 

  10. Hall, J. H., Chien, J. Y., Kauffman, J. M., Litak, P. T., Adams, J. K., Henry, R. A., & Hollins, R. A. (1992). Synthesis and photophysical properties of some 5(2)-aryl-2(5)-(4-pyridyl)oxazoles and related oxadiazoles and furans. Journal of Heterocyclic Chemistry, 29, 1245–1273. https://doi.org/10.1002/jhet.5570290534

    Article  Google Scholar 

  11. Krasovitsky, B. M., Dyumaev, K. M., Afanasiady, L. S., Tur, I. N., Verezubova, A. A., & Ptyagina, L. M. (1986). Synthesis of N-heterocyclic analogues of 2,5-diaryloxazoles. Chemistry of Heterocyclic Compounds, 22(2), 229–229. https://doi.org/10.1007/BF00519954

    Article  Google Scholar 

  12. Afanasiadi, L. M., Tur, I. N., & Kurapov, P. B. (1985). Spectral-luminescence properties and basicities of 2-(4-pyridyl)-5-(4-r-phenyl)oxazoles. Chemistry of Heterocyclic Compounds, 21, 397–400. https://doi.org/10.1007/BF00504397

    Article  Google Scholar 

  13. Volchkov, V. V., Gostev, F. E., Shelaev, I. V., Nadtochenko, V. A., Dmitrieva, S. N., Gromov, S. P., & Melnikov, M. Y. (2016). Complexation of donor-acceptor substituted aza-crowns and alkali and alkaline earth metal cations. Charge transfer and recoordination in excited state. Journal of Fluorescence, 26, 585–592. https://doi.org/10.1007/s10895-015-1744-5

    Article  CAS  PubMed  Google Scholar 

  14. Schmidt, M. W., Baldridge, K. K., Boatz, J. A., Elbert, S. T., Gordon, M. S., Jensen, J. H., et al. (1993). General atomic and molecular electronic structure system. Journal of Computational Chemistry, 14, 1347–1363. https://doi.org/10.1007/10.1001/jcc.540141112

    Article  CAS  Google Scholar 

  15. Marenich, A. V., Cramer, C. J., & Truhlar, D. G. (2009). Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. Physical Chemistry B, 113, 6378–6396. https://doi.org/10.1021/jp810292n

    Article  CAS  Google Scholar 

  16. Granovsky, A. A. (2017). Firefly 8.2, build 10203. https://classic.chem.msu.su/gran/Firefly/index.html

  17. Granovsky, A. A. (2011). Extended multi-configuration quasi-degenerate perturbation theory: The new approach to multi-state multi-reference perturbation theory. Chemical Physics, 134, 214113–214126. https://doi.org/10.1063/1.3596699

    Article  CAS  Google Scholar 

  18. Miertus, S., Scrocco, E., & Tomasi, J. (1981). Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects. Chemical Physics, 55, 117–129. https://doi.org/10.1016/0301-0104(81)85090-2

    Article  CAS  Google Scholar 

  19. Horng, M. L., Gardecki, J. A., Papazyan, A., & Maroncelli, M. (1995). Subpicosecond measurements of polar solvation dynamics: Coumarin 153 revisited. Physical Chemistry, 99, 17311–17337. (SSDI 0022-3654/95/2099-17311).

    Article  CAS  Google Scholar 

  20. Lakowicz, J. R. (2006). Principles of fluorescent spectroscopy (3rd ed., pp. 97–149). New York: Springer.

    Book  Google Scholar 

  21. Yguerabide, J., Epstein, H. F., & Stryer, L. (1970). Segmental flexibility in an antibody molecule. Journal of Molecular Biology, 51, 573–590. https://doi.org/10.1016/0022-2836(70)90009-4

    Article  CAS  PubMed  Google Scholar 

  22. van der Meer, M. J., Zhang, H., Rettig, W., & Glasbeek, M. (2000). Femto- and picosecond fluorescence studies of solvation and non-radiative deactivation of ionic styryl dyes in liquid solution. Chemical Physics Letters, 320, 673–680. https://doi.org/10.1016/S0009-2614(00)00258-X

    Article  Google Scholar 

  23. Zimmerman, H. E. (1998). Meta-ortho effect in organic photochemistry: Mechanistic and exploratory organic photochemistry. The Journal of Physical Chemistry A, 102, 5616–5621. https://doi.org/10.1021/jp9803182

    Article  CAS  Google Scholar 

  24. Volchkov, V. V., Khimich, M. N., Rusalov, M. V., Gostev, F. E., Shelaev, I. V., Nadtochenko, V. A., Gromov, S. P., & Melnikov, MYa. (2020). Intramolecular photo-driven electron transfer in the series of DMABN-related compounds with para-substituted acceptors. Study of the rate constants by Marcus theory. Journal of Physical Organic Chemistry, 33(4), e4041. https://doi.org/10.1002/poc.4041

    Article  CAS  Google Scholar 

  25. von der Haar, Th., Hebecker, A., Il’ichev, Yu., Jiang, Y.-B., Kűhnle, W., & Zachariasse, K. A. (1995). Excited-state intramolecular charge transfer in donor/acceptor-substituted aromatic hydrocarbons and in biaryls. The significance of the redox potentials of the D/A subsystems. Recueil des Travaux Chimiques des Pays-Bas, 114, 430–442. https://doi.org/10.1002/recl.19951141103

    Article  Google Scholar 

  26. Grabowski, Z. R., & Rotkiewicz, K. (2003). Structural changes accompanying intramolecular electron transfer: Focus on twisted intramolecular charge-transfer states and structures. Chemical Reviews, 103, 3899–4031. https://doi.org/10.1021/cr940745l

    Article  PubMed  Google Scholar 

  27. Glasbeek, M., & Zhan, H. (2004). Femtosecond studies of solvation and intramolecular configurational dynamics of fluorophores in liquid solution. Chemical Reviews, 104, 1929–1954. https://doi.org/10.1021/cr0206723

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Ministry of Science and Higher Education of the Russian Federation (in respect of the femtosecond pump and probe setup), Government Assignment 0082-2019-0001, registration no. AAAA-A19-119012890064-7. The authors wish to thank Prof. B. M. Bolotin for the compounds provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valery V. Volchkov.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volchkov, V.V., Khimich, M.N., Rusalov, M.V. et al. Intramolecular photo-driven charge transfer in a series of pyridyl substituted phenyloxazoles. Structural relaxation in meta-substituted ethylpyridinium derivative of phenyloxazole. Photochem Photobiol Sci 20, 1419–1428 (2021). https://doi.org/10.1007/s43630-021-00103-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-021-00103-0

Keywords

Navigation