Skip to main content

Advertisement

Log in

Enhanced Recovery After Surgery Protocol for Oblique Lumbar Interbody Fusion

  • Original Article
  • Published:
Indian Journal of Orthopaedics Aims and scope Submit manuscript

Abstract

Background

Enhanced recovery after surgery (ERAS) attempts to decrease the surgical stress response to minimize postoperative complications and improve functional rehabilitation after major surgery, but it has not been widely utilized in spinal surgery. The study reported the development and implementation of an ERAS pathway for patients with lumbar spondylolisthesis undergoing oblique lumbar interbody fusion (OLIF).

Methods

Seventy-six patients underwent OLIF surgery from January 2018 to December 2019 were enrolled. Thirty-seven patients were included in pre-ERAS group and 39 patients were included in ERAS group. Major outcomes that were collected included demographics, comorbidities, blood loss, operative time, length of hospital stay (LOS), cost, time to walk, blood transfusion, complications, Visual analogue scale (VAS) scores, Oswestry Disability Index (ODI) and factors affecting LOS were also recorded. The ERAS pathway and compliance with pathway elements were also recorded.

Results

After ERAS implementation, the blood loss, LOS, the financial costs, and the time to walk were significantly lower in the ERAS group compared to the pre-ERAS group (all P < 0.05). There was no significant difference in operative time, complications, and blood transfusion between both groups. VAS and ODI between the two groups showed a significant difference during postoperative 3 days and postoperative 1 month (both P < 0.05). The preoperative time to walk was significant factors for hospital stay at the final follow-up.

Conclusion

Institution of an ERAS protocol for OLIF surgery appears to accelerate functional recovery, reduce length of stay and financial costs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

OLIF:

Oblique lumbar interbody fusion

ERAS:

Enhanced recovery after surgery

VAS:

Visual analogue scale

ODI:

Oswestry Disability Index

COPD:

Chronic obstructive pulmonary disease

CCD:

Chronic cardiovascular disease

BMI:

Body mass index

LOS:

Length of stay

USD:

US Dollar

TXA:

Tranexamic acid

VTE:

Vein thromboembolism

PONV:

Postoperative nausea and vomiting

POD:

Postoperative day

References

  1. Ljungqvist, O., Scott, M., & Fearon, K. C. (2017). Enhanced recovery after surgery: A review. JAMA Surgery, 152(3), 292–298.

    Article  PubMed  Google Scholar 

  2. Kleppe, K. L., & Greenberg, J. A. (2018). Enhanced recovery after surgery protocols: Rationale and components. Surgical Clinics of North America, 98(3), 499–509.

    Article  PubMed  Google Scholar 

  3. Thacker, J. (2018). Overview of enhanced recovery after surgery: The evolution and adoption of enhanced recovery after surgery in North America. Surgical Clinics of North America, 98(6), 1109–1117.

    Article  PubMed  Google Scholar 

  4. Aasvang, E. K., Luna, I. E., & Kehlet, H. (2015). Challenges in postdischarge function and recovery: The case of fast-track hip and knee arthroplasty. British Journal of Anaesthesia, 115(6), 861–866.

    Article  CAS  PubMed  Google Scholar 

  5. Hah, R., & Kang, H. P. (2019). Lateral and oblique lumbar interbody fusion-current concepts and a review of recent literature. Current Reviews in Musculoskeletal Medicine, 12, 305–310.

    Article  PubMed Central  Google Scholar 

  6. Li, J. X., Phan, K., & Mobbs, R. (2017). Oblique lumbar interbody fusion: Technical aspects, operative outcomes, and complications. World Neurosurgery, 98, 113–123.

    Article  CAS  PubMed  Google Scholar 

  7. Xu, D. S., Walker, C. T., Godzik, J., Turner, J. D., Smith, W., & Uribe, J. S. (2018). Minimally invasive anterior, lateral, and oblique lumbar interbody fusion: A literature review. Annals of Translational Medicine, 6(6), 104.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Davis, T. T., Hynes, R. A., Fung, D. A., Spann, S. W., MacMillan, M., Kwon, B., Liu, J., Acosta, F., & Drochner, T. E. (2014). Retroperitoneal oblique corridor to the L2–S1 intervertebral discs in the lateral position: An anatomic study. Journal of Neurosurgery. Spine, 21(5), 785–793.

    Article  PubMed  Google Scholar 

  9. Bridwell, K. H., Lenke, L. G., McEnery, K. W., Baldus, C., & Blanke, K. (1995). Anterior fresh frozen structural allografts in the thoracic and lumbar spine Do they work if combined with posterior fusion and instrumentation in adult patients with kyphosis or anterior column defects? Spine (Phila Pa 1976), 20(12), 1410–1418.

    Article  CAS  Google Scholar 

  10. Lim, T. H., Kwon, H., Jeon, C. H., Kim, J. G., Sokolowski, M., Natarajan, R., An, H. S., & Andersson, G. B. (2001). Effect of endplate conditions and bone mineral density on the compressive strength of the graft-endplate interface in anterior cervical spine fusion. Spine (Phila Pa 1976), 26(8), 951–956.

    Article  CAS  Google Scholar 

  11. Silvestre, C., Mac-Thiong, J. M., Hilmi, R., & Roussouly, P. (2012). Complications and morbidities of mini-open anterior retroperitoneal lumbar interbody fusion: Oblique lumbar interbody fusion in 179 patients. Asian Spine J, 6(2), 89–97.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wainwright, T. W., Immins, T., & Middleton, R. G. (2016). Enhanced recovery after surgery (ERAS) and its applicability for major spine surgery. Best Practice & Research. Clinical Anaesthesiology, 30(1), 91–102.

    Article  PubMed  Google Scholar 

  13. Wang, M. Y., Chang, P.-Y., & Grossman, J. (2017). Development of an Enhanced Recovery After Surgery (ERAS) approach for lumbar spinal fusion. Journal of Neurosurgery Spine, 26(4), 411–418.

    Article  Google Scholar 

  14. Kehlet, H., & Wilmore, D. W. (2002). Multimodal strategies to improve surgical outcome. American Journal of Surgery, 183(6), 630–641.

    Article  PubMed  Google Scholar 

  15. Melnyk, M., Casey, R. G., Black, P., & Koupparis, A. J. (2011). Enhanced recovery after surgery (ERAS) protocols: Time to change practice? Canadian Urological Association Journal, 5(5), 342–348.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kim, S. I., Ha, K. Y., & Oh, I. S. (2016). Preemptive multimodal analgesia for postoperative pain management after lumbar fusion surgery: A randomized controlled trial. European Spine Journal, 25(5), 1614–1619.

    Article  PubMed  Google Scholar 

  17. Siribumrungwong, K., Cheewakidakarn, J., Tangtrakulwanich, B., & Nimmaanrat, S. (2015). Comparing parecoxib and ketorolac as preemptive analgesia in patients undergoing posterior lumbar spinal fusion: A prospective randomized double-blinded placebo-controlled trial. BMC Musculoskeletal Disorders, 16, 59.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Huang, Z., Xie, X., Li, L., Huang, Q., Ma, J., Shen, B., Kraus, V. B., & Pei, F. (2017). Intravenous and topical tranexamic acid alone are superior to tourniquet use for primary total knee arthroplasty: A prospective, randomized controlled trial. Journal of Bone and Joint Surgery. American Volume, 99(24), 2053–2061.

    Article  PubMed  Google Scholar 

  19. Albertin, A., La Colla, L., Gandolfi, A., Colnaghi, E., Mandelli, D., Gioia, G., & Fraschini, G. (2008). Greater peripheral blood flow but less bleeding with propofol versus sevoflurane during spine surgery: a possible physiologic model? Spine (Phila Pa 1976), 33(18), 2017–2022.

    Article  Google Scholar 

  20. Adogwa, O., Elsamadicy, A. A., Fialkoff, J., Cheng, J., Karikari, I. O., & Bagley, C. (2017). Early ambulation decreases length of hospital stay, perioperative complications and improves functional outcomes in elderly patients undergoing surgery for correction of adult degenerative scoliosis. Spine (Phila Pa 1976), 42(18), 1420–1425.

    Article  Google Scholar 

  21. Ackerman, R. S., Hirschi, M., Alford, B., Evans, T., Kiluk, J. V., & Patel, S. Y. (2019). Enhanced revenue after surgery? A cost-standardized enhanced recovery pathway for mastectomy decreases length of stay. World Journal of Surgery, 43(3), 839–845.

    Article  PubMed  Google Scholar 

  22. Liu, V. X., Rosas, E., Hwang, J., Cain, E., Foss-Durant, A., Clopp, M., Huang, M., Lee, D. C., Mustille, A., Kipnis, P., et al. (2017). Enhanced recovery after surgery program implementation in 2 surgical populations in an integrated health care delivery system. JAMA Surgery, 152(7), e171032.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Liu, J. Y., & Wick, E. C. (2018). Enhanced recovery after surgery and effects on quality metrics. Surgical Clinics of North America, 98(6), 1119–1127.

    Article  PubMed  Google Scholar 

  24. Lee, L., & Feldman, L. S. (2018). Enhanced recovery after surgery: Economic impact and value. Surgical Clinics of North America, 98(6), 1137–1148.

    Article  PubMed  Google Scholar 

  25. Grasu, R. M., Cata, J. P., Dang, A. Q., Tatsui, C. E., Rhines, L. D., Hagan, K. B., Bhavsar, S., Raty, S. R., Arunkumar, R., Potylchansky, Y., et al. (2018). Implementation of an enhanced recovery after spine surgery program at a large cancer center: A preliminary analysis. Journal of Neurosurgery. Spine, 29(5), 588–598.

    Article  PubMed  Google Scholar 

  26. Garfinkle, R., Boutros, M., Ghitulescu, G., Vasilevsky, C. A., Charlebois, P., Liberman, S., Stein, B., Feldman, L. S., & Lee, L. (2018). Clinical and economic impact of an enhanced recovery pathway for open and laparoscopic rectal surgery. Journal of Laparoendoscopic & Advanced Surgical Techniques. Part A, 28(7), 811–818.

    Article  Google Scholar 

  27. Lee, L., Mata, J., Ghitulescu, G. A., Boutros, M., Charlebois, P., Stein, B., Liberman, A. S., Fried, G. M., Morin, N., Carli, F., et al. (2015). Cost-effectiveness of enhanced recovery versus conventional perioperative management for colorectal surgery. Annals of Surgery, 262(6), 1026–1033.

    Article  PubMed  Google Scholar 

  28. Portinari, M., Ascanelli, S., Targa, S., Dos Santos Valgode, E. M., Bonvento, B., Vagnoni, E., Camerani, S., Verri, M., Volta, C. A., & Feo, C. V. (2018). Impact of a colorectal enhanced recovery program implementation on clinical outcomes and institutional costs: A prospective cohort study with retrospective control. International Journal of Surgery, 53, 206–213.

    Article  PubMed  Google Scholar 

  29. Borgeat, A., & Blumenthal, S. (2008). Postoperative pain management following scoliosis surgery. Current Opinion in Anaesthesiology, 21(3), 313–316.

    Article  PubMed  Google Scholar 

  30. Husted, H., Lunn, T. H., Troelsen, A., Gaarn-Larsen, L., Kristensen, B. B., & Kehlet, H. (2011). Why still in hospital after fast-track hip and knee arthroplasty? Acta Orthopaedica, 82(6), 679–684.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ziemann-Gimmel, P., Hensel, P., Koppman, J., & Marema, R. (2013). Multimodal analgesia reduces narcotic requirements and antiemetic rescue medication in laparoscopic Roux-en-Y gastric bypass surgery. Surgery for Obesity and Related Diseases, 9(6), 975–980.

    Article  PubMed  Google Scholar 

  32. Borison, H. L. (1977). Central nervous respiratory depressants–narcotic analgesics. Pharmacology & Therapeutics. Part B, 3(2), 227–237.

    CAS  Google Scholar 

  33. Louw, A., Diener, I., Landers, M. R., Zimney, K., & Puentedura, E. J. (2016). Three-year follow-up of a randomized controlled trial comparing preoperative neuroscience education for patients undergoing surgery for lumbar radiculopathy. Journal of Spine Surgery, 2(4), 289–298.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hirose, J., Taniwaki, T., Fujimoto, T., Okada, T., Nakamura, T., Okamoto, N., Usuku, K., & Mizuta, H. (2014). Predictive value of E-PASS and POSSUM systems for postoperative risk assessment of spinal surgery. Journal of Neurosurgery. Spine, 20(1), 75–82.

    Article  PubMed  Google Scholar 

  35. Hu, S. S., Fontaine, F., Kelly, B., & Bradford, D. S. (1998). Nutritional depletion in staged spinal reconstructive surgery. The effect of total parenteral nutrition. Spine, 23(12), 1401–1405.

    Article  CAS  PubMed  Google Scholar 

  36. Smith, M. D., McCall, J., Plank, L., Herbison, G. P., & Soop, M. (2014). Nygren J (2014) Preoperative carbohydrate treatment for enhancing recovery after elective surgery. Cochrane Database of Systematic Reviews, 8, CD009161.

    Google Scholar 

  37. Moucha, C. S., Weiser, M. C., & Levin, E. J. (2016). Current strategies in anesthesia and analgesia for total knee arthroplasty. Journal of American Academy of Orthopaedic Surgeons, 24(2), 60–73.

    Article  Google Scholar 

  38. Rosenberg, A. G. (2006). Anesthesia and analgesia protocols for total knee arthroplasty. American Journal of Orthopedics (Belle Mead, N.J.), 35(7 Suppl), 23–26.

    Google Scholar 

  39. Barker, F. G. (2002). Efficacy of prophylactic antibiotic therapy in spinal surgery: a meta-analysis. Neurosurgery, 51(2), 391–400. discussion 400-391.

    Article  PubMed  Google Scholar 

  40. Gill, J. B., Chin, Y., Levin, A., & Feng, D. (2008). The use of antifibrinolytic agents in spine surgery. A meta-analysis. Journal of Bone and Joint Surgery, 90(11), 2399–2407.

    Article  Google Scholar 

  41. Tsutsumimoto, T., Shimogata, M., Ohta, H., Yui, M., Yoda, I., & Misawa, H. (2011). Tranexamic acid reduces perioperative blood loss in cervical laminoplasty: a prospective randomized study. Spine(Phila Pa 1976), 36(23), 1913–1918.

    Article  Google Scholar 

  42. Bacchin, M. R., Ceria, C. M., Giannone, S., Ghisi, D., Stagni, G., Greggi, T., & Bonarelli, S. (2016). Goal-directed fluid therapy based on stroke volume variation in patients undergoing major spine surgery in the prone position: a cohort study. Spine (Phila Pa 1976), 41(18), E1131–E1137.

    Article  Google Scholar 

  43. Nygren, J., Thacker, J., Carli, F., Fearon, K. C., Norderval, S., Lobo, D. N., Ljungqvist, O., Soop, M., & Ramirez, J. (2012). Enhanced recovery after surgery S: Guidelines for perioperative care in elective rectal/pelvic surgery: Enhanced Recovery After Surgery (ERAS(R)) Society recommendations. Clinical Nutrition, 31(6), 801–816.

    Article  CAS  PubMed  Google Scholar 

  44. Wood, K. B., Kos, P. B., Abnet, J. K., & Ista, C. (1997). Prevention of deep-vein thrombosis after major spinal surgery: A comparison study of external devices. Journal of Spinal Disorders, 10(3), 209–214.

    Article  CAS  PubMed  Google Scholar 

  45. Greenwood, J., McGregor, A., Jones, F., Mullane, J., & Hurley, M. (2016). Rehabilitation Following Lumbar Fusion Surgery: A systematic review and meta-analysis. Spine (Phila Pa 1976), 41(1), E28-36.

    Article  Google Scholar 

  46. Baldini, G., Bagry, H., Aprikian, A., & Carli, F. (2009). Postoperative urinary retention: Anesthetic and perioperative considerations. Anesthesiology, 110(5), 1139–1157.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to all the patients involved in this study from the first affiliated hospital of Soochow University. The study was approved by the Medical Ethics Committees of The First Affiliated Hospital of Soochow University.

Funding

There were no external funding sources for this study.

Author information

Authors and Affiliations

Authors

Contributions

Shao XF assisted with care of the patient and wrote majority of the manuscript. Li RJ and Zhang LC helped with literature review and writing assistance. Jiang WM performed the surgery and approved the manuscript.

Corresponding author

Correspondence to Weimin Jiang.

Ethics declarations

Conflict of interests

The authors declare that they have no competing interests.

Ethical Approval

The study was approved by the Medical Ethics Committees of The First Affiliated Hospital of Soochow University.

Ethical standard

This article does not contain any studies with human or animal subjects performed by the any of the authors.

Informed consent

For this type of study informed consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, X., Li, R., Zhang, L. et al. Enhanced Recovery After Surgery Protocol for Oblique Lumbar Interbody Fusion. JOIO 56, 1073–1082 (2022). https://doi.org/10.1007/s43465-022-00641-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43465-022-00641-4

Keywords

Navigation