Skip to main content
Log in

Friction spot extrusion brazing of copper to AISI 304 stainless steel with Zn interlayer: effect of shoulder surface modification

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

The friction spot extrusion brazing of Cu and AISI 304 stainless plates was carried out with a pure Zn interlayer medium to prevent Cu-Fe reaction by changing the tool shoulder surfaces from smooth to scrolled shoulder. The metallurgical and mechanical characterizations and fracture behaviors of the as-welded joints were studied. The change in tool shoulder surface had no significant effect on the chemical composition and the formation of interlocked or the plastically deformed material flow zone of the joint at an unchanged processing parameter setting. The kernel average misorientation fraction, high angle grain boundaries, and dislocation density are slightly higher at the stir zone of the smooth shoulder-produced welds owing to the higher heat input in the scroll shoulder-produced counterparts. The change of the tool from a smooth shoulder to a scroll shoulder tool produced a slightly more flash (non-uniform), increased peak temperature (409–459 °C), caused a rise in the average grains (6.58–7.73 µm) and promoted the fracture load (1359–2249 N) of the welds. Because there is no upper sheet bulging-induced interfacial gap at the brazed zone the tensile result of the scroll shoulder-produced joint has improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Kumar Dinda S, Kar J, Gopal Roy G, Kockelmann W, Srirangam P. Texture mapping in electron beam welded dissimilar copper-stainless steel joints by neutron diffraction. Vacuum. 2020;181:109668.

    Article  ADS  Google Scholar 

  2. Aghaee Attar M, Ghoreishi M, Malekshahi Beiranvand Z. Prediction of weld geometry, temperature contour and strain distribution in disk laser welding of dissimilar joining between copper & 304 stainless steel. Optik. 2020;219:165288.

    Article  ADS  CAS  Google Scholar 

  3. Cheng Z, Liu H, Huang J, Ye Z, Yang J, Chen S. MIG-TIG double-sided arc welding of copper-stainless steel using different filler metals. J Manuf Process. 2020;55:208–19.

    Article  Google Scholar 

  4. Li J, Cai Y, Yan F, Wang C, Zhu Z, Hu C. Porosity and liquation cracking of dissimilar Nd: YAG laser welding of SUS304 stainless steel to T2 copper. Opt Laser Technol. 2020;122:105881.

    Article  CAS  Google Scholar 

  5. Gladkovsky SV, Kuteneva SV, Sergeev SN. Microstructure and mechanical properties of sandwich copper/steel composites produced by explosive welding. Mater Charact. 2019;154:294–303.

    Article  CAS  Google Scholar 

  6. Varanasi D, Koncz-Horvath D, Sycheva A, Baumli P, Kaptay G. Cracking of copper brazed steel joints due to precipitation of MnS upon cooling. J Mater Eng Perform. 2020;29:8183–93.

    Article  CAS  Google Scholar 

  7. Mangla V, Sharma JD, Kumar S, Dinesh Kumar P, Agarwal A. Joining of stainless steel (SS304) and OFE copper by vacuum brazing. Mater Today: Proc. 2020;26:724–7.

    CAS  Google Scholar 

  8. Wang Y, Luo J, Wang X, Xu X. Interfacial characterization of T3 copper/35CrMnSi steel dissimilar metal joints by inertia radial friction welding. Int J Adv Manuf Technol. 2013;68:1479–90.

    Article  Google Scholar 

  9. Vyas HD, Mehta KP, Badheka V, Doshi B. Friction welding of dissimilar joints copper-stainless steel pipe consist of 0.06 wall thickness to pipe diameter ratio. J Manuf Process. 2021;68:1176–90.

    Article  Google Scholar 

  10. Imani Y, Besharati MK, Guillot M. Improving friction stir welding between copper and 304L stainless steel. Adv Mat Res. 2012;409:263–8.

    CAS  Google Scholar 

  11. Luo J, Xiang J, Liu D, Li F, Xue K. Radial friction welding interface between brass and high carbon steel. J Mater Process Technol. 2012;212:385–92.

    Article  CAS  Google Scholar 

  12. Shen Z, Chen Y, Haghshenas M, Nguyen T, Galloway J, Gerlich AP. Interfacial microstructure and properties of copper-clad steel produced using friction stir welding versus gas metal arc welding. Mater Charact. 2015;104:1–9.

    Article  CAS  Google Scholar 

  13. Jafari M, Abbasi M, Poursina D, Gheysarian A, Bagheri B. Microstructures and mechanical properties of friction stir welded dissimilar steel-copper joints. J Mech Sci Technol. 2017;31:1135–42.

    Article  Google Scholar 

  14. Sahlot P, Nene SS, Frank M, Mishra RS, Arora A. Towards attaining dissimilar lap joint of CuCrZr alloy and 316L stainless steel using friction stir welding. Sci Technol Weld Join. 2018;23:715–20.

    Article  CAS  Google Scholar 

  15. Guo G, Shen Y, Cui C, Gao A, Wang B, Yin J. Interfacial properties of friction stir lap welded 430/304 stainless steels using Cu interlayer. Mater Lett. 2021;284:129027.

    Article  CAS  Google Scholar 

  16. Paidar M, Memon S, Samusenkov VO, Babaei B, Ojo OO. Friction spot extrusion welding-brazing of copper to aluminum alloy. Mater Lett. 2021;285:129160.

    Article  CAS  Google Scholar 

  17. Paidar M, Mohanavel V, Ojo OO, Mehrez S, Rajkumar S, Ravichandran M. Dieless friction stir extrusion-brazing (DFSE-B) of AA2024-T3 aluminum alloy to Copper with Zn interlayer. Results Phys. 2021;24:104101.

    Article  Google Scholar 

  18. Fan G, Paidar M, Mehrez S, Ojo OO, Liu M, Dai Y, Mahariq I. Influence of shoulder diameter on interfacial microstructure and mechanical behavior in dieless friction stir riveting of CP-Copper to 321 stainless steel. Vacuum. 2022;197:110809.

    Article  ADS  CAS  Google Scholar 

  19. Paidar M, Bokov D, Mehrez S, Nasution MKM, Ojo OO, Zain AM. The influence of the backing plate materials on microstructure and mechanical properties of friction spot extrusion brazing of AA2024-T3 aluminum alloy and Brass sheets. J Manuf Process. 2022;74:28–39.

    Article  Google Scholar 

  20. Saju TP, Narayanan RG. Dieless friction stir lap joining of AA 5050–H32 with AA 6061–T6 at varying pre-drilled hole diameters. J Manuf Process. 2020;53:21–33.

    Article  Google Scholar 

  21. Han J, Paidar M, Vaira Vignesh R, Mehta KP, Heidarzadeh A, Ojo OO. Effect of shoulder features during friction spot extrusion welding of 2024–T3 to 6061–T6 aluminum alloys. Arch Civ Mech Eng. 2020;20:84.

    Article  Google Scholar 

  22. Oladimeji OO, Taban E, Kaluc E. Understanding the role of welding parameters and tool profile on the morphology and properties of expelled flash of spot welds. Mater Des. 2016;108:518–28.

    Article  CAS  Google Scholar 

  23. Saju TP, Ganesh Narayanan R, Saha Roy B. Effect of pinless tool shoulder diameter on dieless friction stir extrusion joining of AA 5052–H32 and AA 6061–T6 aluminum alloy sheets. J Mech Sci Technol. 2019;33:3981–97.

    Article  Google Scholar 

  24. Tong L, Xie J, Liu L, Chang G, Ojo OO. Microscopic appraisal and mechanical behavior of hybrid Cu/Al joints fabricated via friction stir spot welding-brazing and modified friction stir clinching-brazing. J Mater Res Technol. 2020;9:13239–49.

    Article  CAS  Google Scholar 

  25. Ahmad S. Presence of golden ratio relationships in Fe–Fe3C, Cu–Zn and Cu–Sn alloy systems. Int J Des Nat Ecodyn. 2015;10:174–81.

    Article  Google Scholar 

  26. Paidar M, Ashraff Ali KS, Mohanavel V, Mehrez S, Ravichandran M, Ojo OO. Weldability and mechanical properties of AA5083-H112 aluminum alloy and pure copper dissimilar friction spot extrusion welding-brazing. Vacuum. 2021;187:110080.

    Article  ADS  CAS  Google Scholar 

  27. Paidar M, Mehrez S, Ojo OO, Mohanavel V, Babaei B, Ravichandran M. Modified friction stir clinching of AA6061-T6/AA5754-O joint: effect of tool rotational speed and solution heat treatment on mechanical, microstructure, and fracture behaviors. Mater Charact. 2021;173:110962.

    Article  CAS  Google Scholar 

  28. Paidar M, Elveny M, Mehrez S, Ravi S, Babaei B, Ravichandran M. Influence of material positioning during modified friction stir clinching brazing of Al/Zn/Cu welds. Mater Lett. 2021;301:130250.

    Article  CAS  Google Scholar 

  29. Paidar M, Kazemi A, Mehrez S, Ojo OO, Matyuso Nasution MK, Nikolaevich Mironov S. Investigation of modified friction stir clinching-brazing process of AA2024 Al/AZ31 Mg: metallurgical and mechanical properties. Arch Civil Mech Eng. 2021;21:115.

    Article  Google Scholar 

  30. Paidar M, Tahani K, Vaira Vignesh R, Ojo OO, Ezatpour HR, Moharrami A. Modified friction stir clinching of 2024–T3 to 6061–T6 aluminum alloy: effect of dwell time and precipitation-hardening heat treatment. Mater Sci Eng A. 2020;791:139734.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Scientific Research Program Funded by Shaanxi Provincial Education Department (No. 20JC001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Moslem Paidar or Mahyuddin Khairuddin Matyuso Nasution.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

We confirm that this work is original and has not been published elsewhere, nor it is currently under consideration for publication elsewhere. All authors have approved the manuscript and have agreed with its submission to your journal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, J., Paidar, M., Mehrez, S. et al. Friction spot extrusion brazing of copper to AISI 304 stainless steel with Zn interlayer: effect of shoulder surface modification. Archiv.Civ.Mech.Eng 22, 62 (2022). https://doi.org/10.1007/s43452-022-00386-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-022-00386-9

Keywords

Navigation