Skip to main content
Log in

Fracture limit analysis of DP590 steel using single point incremental forming: experimental approach, theoretical modeling and microstructural evolution

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

The single point incremental forming (SPIF) process is gaining special attention in the aerospace, biomedical and manufacturing industries for making intricate asymmetric components. In the present study, SPIF process has been performed for forming varied wall angle conical and pyramidal frustums using DP590 steel. Initially, the conventional stretch forming process has been performed for finding the fracture forming limit diagram (FFLD). Further, it has been validated with the limiting strains found using SPIF process. The conical and pyramidal frustums deformed near to the plane strain and biaxial region, respectively. The theoretical FFLD has been predicted using seven different ductile damage models. The effect of sheet anisotropy while predicting the fracture strains has been included using Hill 1948 and Barlat 1989 yielding functions. Among the used damage models, the Bao-Wierzbicki (BW) model along with Barlat 1989 yield criterion displayed the least error of 2.92% while predicting the fracture locus. The stress triaxiality in the different forming region has been thoroughly investigated and it has been found that the higher triaxiality value reveals high rate of accumulated damage which lead to early failure of the material in the respective region. The stress triaxiality and effective fracture strains have also been found to be significantly affected by the anisotropy. The micro-textural studies have also been performed and it has been found that the increase in local misorientations and shift in the textural components from γ-fiber to ε-fiber in the corner region of the frustums worked towards limiting the formability of material and ultimately leading towards the fracture of frustums.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Pandre S, Morchhale A, Kotkunde N, Singh SK. Influence of processing temperature on formability of thin-rolled DP590 steel sheet. Mater Manuf Processes. 2020;35:901–9. https://doi.org/10.1080/10426914.2020.1743854.

    Article  Google Scholar 

  2. Pandre S, Takalkar P, Morchhale A, Kotkunde N, Singh SK. Prediction capability of anisotropic yielding behaviour for DP590 steel at elevated temperatures. Adv Mater Process Technol. 2020;6:476–84. https://doi.org/10.1080/2374068X.2020.1728647.

    Article  Google Scholar 

  3. Basak S, Katiyar BS, Orozco-Gonzalez P, Baltazar-Hernandez VH, Arora KS, Panda SK. Microstructure, forming limit diagram, and strain distribution of pre-strained DP-IF steel tailor–welded blank for auto body application. Int J Adv Manuf Technol. 2019;104:1749–67. https://doi.org/10.1007/s00170-019-03938-1.

    Article  Google Scholar 

  4. Pandre S, Kotkunde N, Takalkar P, Morchhale A, Sujith R, Singh SK. Flow stress behavior, constitutive modeling, and microstructural characteristics of DP 590 steel at elevated temperatures. J Mater Eng Perform. 2019;28:7565–81. https://doi.org/10.1007/s11665-019-04497-y.

    Article  Google Scholar 

  5. Voswinckel H, Bambach M, Hirt G. Improving geometrical accuracy for flanging by incremental sheet metal forming. Int J Mater Form. 2015;8:391–9. https://doi.org/10.1007/s12289-014-1182-y.

    Article  Google Scholar 

  6. Duflou JR, Verbert J, Belkassem B, Gu J, Sol H, Henrard C, Habraken AM. Process window enhancement for single point incremental forming through multi-step toolpaths. CIRP Ann. 2008;57:253–6. https://doi.org/10.1016/j.cirp.2008.03.030.

    Article  Google Scholar 

  7. Lu B, Ou H, Shi SQ, Long H, Chen J. Titanium based cranial reconstruction using incremental sheet forming. Int J Mater Form. 2016;9:361–70. https://doi.org/10.1007/s12289-014-1205-8.

    Article  Google Scholar 

  8. Basak S, Prasad KS, Sidpara AM, Panda SK. Single point incremental forming of AA6061 thin sheet: calibration of ductile fracture models incorporating anisotropy and post forming analyses. Int J Mater Form. 2019;12:623–42. https://doi.org/10.1007/s12289-018-1439-y.

    Article  Google Scholar 

  9. Isik K, Silva MB, Tekkaya AE, Martins PAF. Formability limits by fracture in sheet metal forming. J Mater Process Technol. 2014;214:1557–65. https://doi.org/10.1016/j.jmatprotec.2014.02.026.

    Article  Google Scholar 

  10. Morchhale A, Kotkunde N, Singh SK. Deep drawing behavior of IN625 alloy under the influence of different process parameters. IOP Conf Ser. 2020;967:012090. https://doi.org/10.1088/1757-899X/967/1/012090.

    Article  Google Scholar 

  11. Abedini A, Butcher C, Worswick MJ. Fracture characterization of rolled sheet alloys in shear loading: studies of specimen geometry, anisotropy, and rate sensitivity. Exp Mech. 2017;57:75–88. https://doi.org/10.1007/s11340-016-0211-9.

    Article  Google Scholar 

  12. Bai Y, Wierzbicki T. A comparative study of three groups of ductile fracture loci in the 3D space. Eng Fract Mech. 2015;135:147–67. https://doi.org/10.1016/j.engfracmech.2014.12.023.

    Article  Google Scholar 

  13. Habibi N, Zarei-Hanzaki A, Abedi H-R. An investigation into the fracture mechanisms of twinning-induced-plasticity steel sheets under various strain paths. J Mater Process Technol. 2015;224:102–16. https://doi.org/10.1016/j.jmatprotec.2015.04.014.

    Article  Google Scholar 

  14. Park N, Huh H, Lim SJ, Lou Y, Kang YS, Seo MH. Fracture-based forming limit criteria for anisotropic materials in sheet metal forming. Int J Plast. 2017;96:1–35. https://doi.org/10.1016/j.ijplas.2016.04.014.

    Article  Google Scholar 

  15. Nakazima K, Kikuma T, Hasuka K. Study on the formability of steel sheets. Yawata Tech Rep. 1968;264:8517–30.

    Google Scholar 

  16. Badrish A, Morchhale A, Kotkunde N, Singh SK. Influence of material modeling on warm forming behavior of nickel based super alloy. Int J Mater Form. 2020;13:445–65. https://doi.org/10.1007/s12289-020-01548-x.

    Article  Google Scholar 

  17. Morchhale A, Kotkunde N, Singh SK. Prediction of flow stress and forming limits for IN625 at elevated temperature using the theoretical and neural network approach. Mater Perform Charact. 2021;10:146–65. https://doi.org/10.1520/MPC20200153.

    Article  Google Scholar 

  18. Dharavath B, Morchhale A, Singh SK, Kotkunde N, Naik MT. Experimental determination and theoretical prediction of limiting strains for ASS 316L at hot forming conditions. J Mater Eng Perform. 2020. https://doi.org/10.1007/s11665-020-04968-7.

    Article  Google Scholar 

  19. Mahalle G, Morchhale A, Kotkunde N, Gupta AK, Singh SK, Lin YC. Forming and fracture limits of IN718 alloy at elevated temperatures: experimental and theoretical investigation. J Manuf Process. 2020;56:482–99. https://doi.org/10.1016/j.jmapro.2020.04.070.

    Article  Google Scholar 

  20. Martins PAF, Bay N, Skjoedt M, Silva MB. Theory of single point incremental forming. CIRP Ann. 2008;57:247–52. https://doi.org/10.1016/j.cirp.2008.03.047.

    Article  Google Scholar 

  21. Silva MB, Skjoedt M, Atkins AG, Bay N, Martins PAF. Single-point incremental forming and formability—failure diagrams. J Strain Anal Eng Design. 2008;43:15–35. https://doi.org/10.1243/03093247JSA340.

    Article  Google Scholar 

  22. Mendiguren J, Galdos L, Saenz de Argandoña E. On the plastic flow rule formulation in anisotropic yielding aluminium alloys. Int J Adv Manuf Technol. 2018;99:255–74. https://doi.org/10.1007/s00170-018-2512-x.

    Article  Google Scholar 

  23. Hou Y, Min J, Stoughton TB, Lin J, Carsley JE, Carlson BE. A non-quadratic pressure-sensitive constitutive model under non-associated flow rule with anisotropic hardening: Modeling and validation. Int J Plast. 2020;135:102808. https://doi.org/10.1016/j.ijplas.2020.102808.

    Article  Google Scholar 

  24. Simo JC, Hughes TJR. Computational inelasticity. New York: Springer-Verlag; 1998. https://doi.org/10.1007/b98904.

    Book  MATH  Google Scholar 

  25. Safaei M, Yoon JW, De Waele W. Study on the definition of equivalent plastic strain under non-associated flow rule for finite element formulation. Int J Plast. 2014;58:219–38. https://doi.org/10.1016/j.ijplas.2013.09.010.

    Article  Google Scholar 

  26. Stoughton TB, Yoon JW. Anisotropic hardening and non-associated flow in proportional loading of sheet metals. Int J Plast. 2009;25:1777–817. https://doi.org/10.1016/j.ijplas.2009.02.003.

    Article  MATH  Google Scholar 

  27. Stoughton TB. A non-associated flow rule for sheet metal forming. Int J Plast. 2002;18:687–714. https://doi.org/10.1016/S0749-6419(01)00053-5.

    Article  MATH  Google Scholar 

  28. Stoughton TB, Yoon JW. Review of Drucker’s postulate and the issue of plastic stability in metal forming. Int J Plast. 2006;22:391–433. https://doi.org/10.1016/j.ijplas.2005.03.002.

    Article  MATH  Google Scholar 

  29. Hill R, Orowan E. A theory of the yielding and plastic flow of anisotropic metals. Proc R Soc Lond. 1948;193:281–97. https://doi.org/10.1098/rspa.1948.0045.

    Article  MathSciNet  MATH  Google Scholar 

  30. Badrish A, Morchhale A, Kotkunde N, Singh SK. Parameter optimization in the thermo-mechanical V-bending process to minimize springback of inconel 625 alloy. Arab J Sci Eng. 2020;45:5295–309. https://doi.org/10.1007/s13369-020-04395-9.

    Article  Google Scholar 

  31. Kotkunde N, Badrish A, Morchhale A, Takalkar P, Singh SK. Warm deep drawing behavior of Inconel 625 alloy using constitutive modelling and anisotropic yield criteria. Int J Mater Form. 2019;13:355–69. https://doi.org/10.1007/s12289-019-01505-3.

    Article  Google Scholar 

  32. Park T, Chung K. Non-associated flow rule with symmetric stiffness modulus for isotropic-kinematic hardening and its application for earing in circular cup drawing. Int J Solids Struct. 2012;49:3582–93. https://doi.org/10.1016/j.ijsolstr.2012.02.015.

    Article  Google Scholar 

  33. Barlat F, Lian K. Plastic behavior and stretchability of sheet metals. Part I: a yield function for orthotropic sheets under plane stress conditions. Int J Plast. 1989;5:51–66. https://doi.org/10.1016/0749-6419(89)90019-3.

    Article  Google Scholar 

  34. Bao Y, Wierzbicki T. On fracture locus in the equivalent strain and stress triaxiality space. Int J Mech Sci. 2004;46:81–98. https://doi.org/10.1016/j.ijmecsci.2004.02.006.

    Article  Google Scholar 

  35. Lee YW. Fracture prediction in metal sheets. Massachusetts Institute of Technology. 2005. https://dspace.mit.edu/handle/1721.1/33560. Accessed Nov 20 2020.

  36. Gorji M, Berisha B, Hora P, Barlat F. Modeling of localization and fracture phenomena in strain and stress space for sheet metal forming. Int J Mater Form. 2016;9:573–84. https://doi.org/10.1007/s12289-015-1242-y.

    Article  Google Scholar 

  37. Freudenthal AM, Geiringer H. The mathematical theories of the inelastic continuum. In: Flügge S, editor. Elasticity and plasticity/Elastizität Und Plastizität. Berlin: Springer; 1958. p. 229–433. https://doi.org/10.1007/978-3-642-45887-3_3.

    Chapter  Google Scholar 

  38. Clift SE, Hartley P, Sturgess CEN, Rowe GW. Fracture prediction in plastic deformation processes. Int J Mech Sci. 1990;32:1–17. https://doi.org/10.1016/0020-7403(90)90148-C.

    Article  Google Scholar 

  39. Cockcroft MG, Latham DJ. Ductility and the workability of metals. J Inst Metals. 1968;96:33–9.

    Google Scholar 

  40. Tarigopula V, Hopperstad OS, Langseth M, Clausen AH, Hild F, Lademo O-G, Eriksson M. A study of large plastic deformations in dual phase steel using digital image correlation and FE analysis. Exp Mech. 2008;48:181–96. https://doi.org/10.1007/s11340-007-9066-4.

    Article  Google Scholar 

  41. Oh SI, Chen CC, Kobayashi S. Ductile Fracture in Axisymmetric Extrusion and Drawing—Part 2: Workability in Extrusion and Drawing. J Eng Ind. 1979;101:36–44.

  42. Brozzo P, Deluca B, Rendina R. A new method for the prediction of formability limits in metal sheets. Proceedings of 7th Biennal Conference IDDR. 1972.

  43. Rice JR, Tracey DM. On the ductile enlargement of voids in triaxial stress fields∗. J Mech Phys Solids. 1969;17:201–17. https://doi.org/10.1016/0022-5096(69)90033-7.

    Article  Google Scholar 

  44. Robertson JH. Elements of X-ray diffraction by BD Cullity. International Union of Crystallography; 1979.

    Google Scholar 

  45. Bunge H-J. X-ray texture analysis in materials and earth sciences. Eur J Mineral. 1997;9:735–62.

    Article  Google Scholar 

  46. Han S, Choi S, Choi J, Seong H, Kim I. Effect of hot-rolling processing on texture and r-value of annealed dual-phase steels. Mater Sci Eng A. 2010;527:1686–94. https://doi.org/10.1016/j.msea.2009.11.016.

    Article  Google Scholar 

  47. Choi S, Kim E, Woo W, Han SH, Kwak JH. The effect of crystallographic orientation on the micromechanical deformation and failure behaviors of DP980 steel during uniaxial tension. Int J Plast. 2013;45:85–102. https://doi.org/10.1016/j.ijplas.2012.11.013.

    Article  Google Scholar 

  48. Raabe D, Lucke K. Rolling and Annealing Textures of BCC Metals. Material Science Forum. 1994; 157-162:597–610. https://doi.org/10.4028/www.scientific.net/MSF.157-162.597

    Article  Google Scholar 

  49. Wani IS, Sathiaraj GD, Ahmed MZ, Reddy SR, Bhattacharjee PP. Materials Characterization Evolution of microstructure and texture during thermo-mechanical processing of a two phase Al 0.5 CoCrFeMnNi high entropy alloy. Mater Charact. 2016;118:417–24. https://doi.org/10.1016/j.matchar.2016.06.021.

    Article  Google Scholar 

  50. Basak S, Prasad KS, Mehto A, Bagchi J, Ganesh YS, Mohanty S, Sidpara AM. Parameter optimization and texture evolution in single point incremental sheet forming process. J Eng Manuf. 2019. https://doi.org/10.1177/0954405419846001.

    Article  Google Scholar 

  51. Zaefferer S, Romano P, Friedel F. EBSD as a tool to identify and quantify bainite and ferrite in low-alloyed Al-TRIP steels. J Microsc. 2008;230:499–508. https://doi.org/10.1111/j.1365-2818.2008.02010.x.

    Article  MathSciNet  Google Scholar 

  52. Zhong Y, Yin F, Sakaguchi T, Nagai K, Yang K. Dislocation structure evolution and characterization in the compression deformed Mn–Cu alloy. Acta Mater. 2007;55:2747–56. https://doi.org/10.1016/j.actamat.2006.12.012.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful for the services provided by the mechanical workshop and materials testing lab of BITS-Pilani, Hyderabad Campus, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitin Kotkunde.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The authors declare that the research was conducted according to the ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandre, S., Morchhale, A., Mahalle, G. et al. Fracture limit analysis of DP590 steel using single point incremental forming: experimental approach, theoretical modeling and microstructural evolution. Archiv.Civ.Mech.Eng 21, 95 (2021). https://doi.org/10.1007/s43452-021-00243-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-021-00243-1

Keywords

Navigation