Skip to main content

Advertisement

Log in

Unraveling snake venom phospholipase A2: an overview of its structure, pharmacology, and inhibitors

  • Review
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Snake bite is a neglected disease that affects millions of people worldwide. WHO reported approximately 5 million people are bitten by various species of snakes each year, resulting in nearly 1 million deaths and an additional three times cases of permanent disability. Snakes utilize the venom mainly for immobilization and digestion of their prey. Snake venom is a composition of proteins and enzymes which is responsible for its diverse pharmacological action. Snake venom phospholipase A2 (SvPLA2) is an enzyme that is present in every snake species in different quantities and is known to produce remarkable functional diversity and pharmacological action like inflammation, necrosis, myonecrosis, hemorrhage, etc. Arachidonic acid, a precursor to eicosanoids, such as prostaglandins and leukotrienes, is released when SvPLA2 catalyzes the hydrolysis of the sn-2 positions of membrane glycerophospholipids, which is responsible for its actions. Polyvalent antivenom produced from horses or lambs is the standard treatment for snake envenomation, although it has many drawbacks. Traditional medical practitioners treat snake bites using plants and other remedies as a sustainable alternative. More than 500 plant species from more than 100 families reported having venom-neutralizing abilities. Plant-derived secondary metabolites have the ability to reduce the venom's adverse consequences. Numerous studies have documented the ability of plant chemicals to inhibit the enzymes found in snake venom. Research in recent years has shown that various small molecules, such as varespladib and methyl varespladib, effectively inhibit the PLA2 toxin. In the present article, we have overviewed the knowledge of snake venom phospholipase A2, its classification, and the mechanism involved in the pathophysiology of cytotoxicity, myonecrosis, anticoagulation, and inflammation clinical application and inhibitors of SvPLA2, along with the list of studies carried out to evaluate the potency of small molecules like varespladib and secondary metabolites from the traditional medicine for their anti-PLA2 effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Abbreviations

cPLA2 :

Cytosolic PLA2

GI, GII:

Group I and Group II

LAAO:

L-amino acid oxidase

PLA2 :

Phospholipase A2

sPLA2 :

Secretory phospholipase A2

SvPLA2 :

Snake venom phospholipase A2

VEGFR-2:

Vascular endothelial growth factor receptor-2

References

  1. Kasturiratne A, Wickremasinghe AR, de Silva N, Gunawardena NK, Pathmeswaran A, Premaratna R, et al. The global burden of snakebite: a literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Med. 2008;5: e218. https://doi.org/10.1371/journal.pmed.0050218.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Feola A, Marella GL, Carfora A, Della Pietra B, Zangani P, Campobasso C Pietro. Snakebite envenoming a challenging diagnosis for the forensic pathologist: a systematic review. Toxins (Basel) 2020;12:699. https://doi.org/10.3390/toxins12110699.

  3. Frare BT, Silva Resende YK, Dornelas B de C, Jorge MT, Souza Ricarte VA, Alves LM, et al. Clinical, Laboratory, and Therapeutic Aspects of Crotalus durissus (South American Rattlesnake) Victims: A Literature Review. Biomed Res Int 2019;2019:1–7. https://doi.org/10.1155/2019/1345923.

  4. Williams D, Gutiérrez JM, Harrison R, Warrell DA, White J, Winkel KD, et al. The global snake bite initiative: an antidote for snake bite. The Lancet. 2010;375:89–91. https://doi.org/10.1016/S0140-6736(09)61159-4.

    Article  Google Scholar 

  5. Steegemans I, Sisay K, Nshimiyimana E, Gebrewold G, Piening T, Menberu Tessema E, et al. Treatment outcomes among snakebite patients in north-west Ethiopia—a retrospective analysis. PLoS Negl Trop Dis. 2022;16: e0010148. https://doi.org/10.1371/journal.pntd.0010148.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Swain A, Gore M. Snakebite envenoming and associated factors in an Indian context. Indian J Community Med. 2021;46:155. https://doi.org/10.4103/ijcm.IJCM_73_20.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gold BS, Dart RC, Barish RA. Bites of venomous snakes. N Engl J Med. 2002;347:347–56. https://doi.org/10.1056/NEJMra013477.

    Article  PubMed  Google Scholar 

  8. Laohawiriyakamol S, Sangkhathat S, Chiengkriwate P, Patrapinyokul S. Surgery in management of snake envenomation in children. World J Pediatr. 2011;7:361–4. https://doi.org/10.1007/s12519-011-0282-8.

    Article  PubMed  Google Scholar 

  9. Williams DJ, Habib AG, Warrell DA. Clinical studies of the effectiveness and safety of antivenoms. Toxicon. 2018;150:1–10. https://doi.org/10.1016/j.toxicon.2018.05.001.

    Article  CAS  PubMed  Google Scholar 

  10. Oliveira AL, Viegas MF, da Silva SL, Soares AM, Ramos MJ, Fernandes PA. The chemistry of snake venom and its medicinal potential. Nat Rev Chem. 2022;6:451–69. https://doi.org/10.1038/s41570-022-00393-7.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mackessy SP. Biochemistry and pharmacology of colubrid snake venoms. J Toxicol Toxin Rev. 2002;21:43–83. https://doi.org/10.1081/TXR-120004741.

    Article  CAS  Google Scholar 

  12. Xiao H, Pan H, Liao K, Yang M, Huang C. Snake venom PLA 2, a promising target for broad-spectrum antivenom drug development. Biomed Res Int. 2017;2017:1–10. https://doi.org/10.1155/2017/6592820.

    Article  CAS  Google Scholar 

  13. Hiu JJ, Yap MKK. Cytotoxicity of snake venom enzymatic toxins: phospholipase A2 and L-amino acid oxidase. Biochem Soc Trans. 2020;48:719–31. https://doi.org/10.1042/BST20200110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kalita B, Singh S, Patra A, Mukherjee AK. Quantitative proteomic analysis and antivenom study revealing that neurotoxic phospholipase A2 enzymes, the major toxin class of Russell’s viper venom from southern India, shows the least immuno-recognition and neutralization by commercial polyvalent antivenom. Int J Biol Macromol. 2018;118:375–85. https://doi.org/10.1016/j.ijbiomac.2018.06.083.

    Article  CAS  PubMed  Google Scholar 

  15. Astudillo AM, Balboa MA, Balsinde J. Selectivity of phospholipid hydrolysis by phospholipase A2 enzymes in activated cells leading to polyunsaturated fatty acid mobilization. Biochimica et Biophysica Acta (BBA)—Molecular and Cell Biology of Lipids 2019;1864:772–83. https://doi.org/10.1016/j.bbalip.2018.07.002.

  16. Malih I, Ahmad rusmili MR, Tee TY, Saile R, Ghalim N, Othman I. Proteomic analysis of Moroccan cobra Naja haje legionis venom using tandem mass spectrometry. J Proteomics 2014;96:240–52. https://doi.org/10.1016/j.jprot.2013.11.012.

  17. Khan SA, Ilies MA. The phospholipase A2 superfamily: structure, isozymes, catalysis, physiologic and pathologic roles. Int J Mol Sci. 2023;24:1353. https://doi.org/10.3390/ijms24021353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dennis EA. Diversity of group types, regulation, and function of phospholipase A2. J Biol Chem. 1994;269:13057–60. https://doi.org/10.1016/S0021-9258(17)36794-7.

    Article  CAS  PubMed  Google Scholar 

  19. Quach ND, Arnold RD, Cummings BS. Secretory phospholipase A2 enzymes as pharmacological targets for treatment of disease. Biochem Pharmacol. 2014;90:338–48. https://doi.org/10.1016/j.bcp.2014.05.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Meyer M, Rastogi P, Beckett C, McHowat J. Phospholipase A2 inhibitors as potential anti-inflammatory agents. Curr Pharm Des. 2005;11:1301–12. https://doi.org/10.2174/1381612053507521.

    Article  CAS  PubMed  Google Scholar 

  21. Dennis EA, Cao J, Hsu Y-H, Magrioti V, Kokotos G. Phospholipase A 2 enzymes: physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention. Chem Rev. 2011;111:6130–85. https://doi.org/10.1021/cr200085w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Doley R, Zhou X, Kini RM. Handbook of venoms and toxins of reptiles. CRC Press; 2010. https://doi.org/10.1201/9781420008661.

  23. Lefkowitz LJ, Deems RA, Dennis EA. Expression of group IA phospholipase A 2 in Pichia pastoris : identification of a phosphatidylcholine activator site using site-directed mutagenesis. Biochemistry. 1999;38:14174–84. https://doi.org/10.1021/bi991432t.

    Article  CAS  PubMed  Google Scholar 

  24. Gelb MH, Min J-H, Jain MK. Do membrane-bound enzymes access their substrates from the membrane or aqueous phase: interfacial versus non-interfacial enzymes. Biochimica et Biophysica Acta (BBA)—Molecular and Cell Biology of Lipids 2000;1488:20–7. https://doi.org/10.1016/S1388-1981(00)00106-2.

  25. Dunn RD, Broady KW. Snake inhibitors of phospholipase A2 enzymes. Biochimica et Biophysica Acta (BBA)—Molecular and Cell Biology of Lipids 2001;1533:29–37. https://doi.org/10.1016/S1388-1981(01)00138-X.

  26. Francis BR, Da Silva NJ, Seebart C, Silva LLCE, Schmidt JJ, Kaiser II. Toxins isolated from the venom of the brazilian coral snake (Micrurus frontalis frontalis) include hemorrhagic type phospholipases A2 and postsynaptic neurotoxins. Toxicon. 1997;35:1193–203. https://doi.org/10.1016/S0041-0101(97)00031-7.

    Article  CAS  PubMed  Google Scholar 

  27. Carredano E, Westerlund B, Persson B, Saarinen M, Ramaswamy S, Eaker D, et al. The three-dimensional structures of two toxins from snake venom throw light on the anticoagulant and neurotoxic sites of phospholipase A2. Toxicon. 1998;36:75–92. https://doi.org/10.1016/S0041-0101(97)00051-2.

    Article  CAS  PubMed  Google Scholar 

  28. Burke JE, Dennis EA. Phospholipase A2 biochemistry. Cardiovasc Drugs Ther. 2009;23:49–59. https://doi.org/10.1007/s10557-008-6132-9.

    Article  CAS  PubMed  Google Scholar 

  29. Tsai I-H, Wang Y-M, Chen Y-H, Tsai T-S, Tu M-C. Venom phospholipases A2 of bamboo viper (Trimeresurus stejnegeri): molecular characterization, geographic variations and evidence of multiple ancestries. Biochem. J. 2004;377:215–23. https://doi.org/10.1042/bj20030818.

  30. Chijiwa T, Tokunaga E, Ikeda R, Terada K, Ogawa T, Oda-Ueda N, et al. Discovery of novel [Arg49]phospholipase A2 isozymes from Protobothrops elegans venom and regional evolution of Crotalinae snake venom phospholipase A2 isozymes in the southwestern islands of Japan and Taiwan. Toxicon. 2006;48:672–82. https://doi.org/10.1016/j.toxicon.2006.06.021.

    Article  CAS  PubMed  Google Scholar 

  31. Kang TS, Georgieva D, Genov N, Murakami MT, Sinha M, Kumar RP, et al. Enzymatic toxins from snake venom: structural characterization and mechanism of catalysis. FEBS J. 2011;278:4544–76. https://doi.org/10.1111/j.1742-4658.2011.08115.x.

    Article  CAS  PubMed  Google Scholar 

  32. Scott DL, White SP, Otwinowski Z, Yuan W, Gelb MH, Sigler PB. Interfacial catalysis: the mechanism of phospholipase A 2. Science. 1979;1990(250):1541–6. https://doi.org/10.1126/science.2274785.

    Article  Google Scholar 

  33. Ward RJ, Chioato L, de Oliveira AHC, Ruller R, Sá JM. Active-site mutagenesis of a Lys49-phospholipase A2: biological and membrane-disrupting activities in the absence of catalysis. Biochem J. 2002;362:89–96. https://doi.org/10.1042/bj3620089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Petan T, Križaj I, Pungerčar J. Restoration of enzymatic activity in a Ser-49 phospholipase A 2 homologue decreases its Ca 2+ -independent membrane-damaging activity and increases its toxicity. Biochemistry. 2007;46:12795–809. https://doi.org/10.1021/bi701304e.

    Article  CAS  PubMed  Google Scholar 

  35. Lomonte B, Angulo Y, Calderón L. An overview of lysine-49 phospholipase A2 myotoxins from crotalid snake venoms and their structural determinants of myotoxic action. Toxicon. 2003;42:885–901. https://doi.org/10.1016/j.toxicon.2003.11.008.

    Article  CAS  PubMed  Google Scholar 

  36. Fujisawa D, Yamazaki Y, Lomonte B, Morita T. Catalytically inactive phospholipase A2 homologue binds to vascular endothelial growth factor receptor-2 via a C-terminal loop region. Biochem J. 2008;411:515–22. https://doi.org/10.1042/BJ20080078.

    Article  CAS  PubMed  Google Scholar 

  37. Costa TR, Menaldo DL, Oliveira CZ, Santos-Filho NA, Teixeira SS, Nomizo A, et al. Myotoxic phospholipases A2 isolated from Bothrops brazili snake venom and synthetic peptides derived from their C-terminal region: cytotoxic effect on microorganism and tumor cells. Peptides (NY). 2008;29:1645–56. https://doi.org/10.1016/j.peptides.2008.05.021.

    Article  CAS  Google Scholar 

  38. Lomonte B, Angulo Y, Moreno E. Synthetic peptides derived from the C-terminal region of Lys49 phospholipase A2 homologues from viperidae snake venoms: biomimetic activities and potential applications. Curr Pharm Des. 2010;16:3224–30. https://doi.org/10.2174/138161210793292456.

    Article  CAS  PubMed  Google Scholar 

  39. Benati RB, Costa TR, Cacemiro M da C, Sampaio SV, de Castro FA, Burin SM. Cytotoxic and pro-apoptotic action of MjTX-I, a phospholipase A2 isolated from Bothrops moojeni snake venom, towards leukemic cells. J Venom Anim Toxins Incl Trop Dis. 2018;24:40. https://doi.org/10.1186/s40409-018-0180-9.

  40. Prinholato da Silva C, Costa TR, Paiva RMA, Cintra ACO, Menaldo DL, Antunes LMG, et al. Antitumor potential of the myotoxin BthTX-I from Bothrops jararacussu snake venom: evaluation of cell cycle alterations and death mechanisms induced in tumor cell lines. J Venom Anim Toxins Incl Trop Dis. 2015;21:44. https://doi.org/10.1186/s40409-015-0044-5.

  41. Marcussi S, Santos PRS, Menaldo DL, Silveira LB, Santos-Filho NA, Mazzi MV, et al. Evaluation of the genotoxicity of Crotalus durissus terrificus snake venom and its isolated toxins on human lymphocytes. Mutation Res/Genetic Toxicol Environ Mutagenesis. 2011;724:59–63. https://doi.org/10.1016/j.mrgentox.2011.06.004.

    Article  CAS  Google Scholar 

  42. Khunsap S, Khow O, Buranapraditkun S, Suntrarachun S, Puthong S, Boonchang S. Anticancer properties of phospholipase A2 from Daboia siamensis venom on human skin melanoma cells. J Venom Anim Toxins Incl Trop Dis. 2016;22:7. https://doi.org/10.1186/s40409-016-0061-z.

  43. Marcussi S, Stábeli RG, Santos-Filho NA, Menaldo DL, Silva Pereira LL, Zuliani JP, et al. Genotoxic effect of bothrops snake venoms and isolated toxins on human lymphocyte DNA. Toxicon. 2013;65:9–14. https://doi.org/10.1016/j.toxicon.2012.12.020.

    Article  CAS  PubMed  Google Scholar 

  44. Gutiérrez JM, Ownby CL. Skeletal muscle degeneration induced by venom phospholipases A2: insights into the mechanisms of local and systemic myotoxicity. Toxicon. 2003;42:915–31. https://doi.org/10.1016/j.toxicon.2003.11.005.

    Article  CAS  PubMed  Google Scholar 

  45. Warrell DA. Snake bite. The Lancet. 2010;375:77–88. https://doi.org/10.1016/S0140-6736(09)61754-2.

    Article  Google Scholar 

  46. Melo PA, Burns CF, Blankemeyer JT, Ownby CL. Membrane depolarization is the initial action of crotoxin on isolated murine skeletal muscle. Toxicon. 2004;43:111–9. https://doi.org/10.1016/j.toxicon.2003.10.029.

    Article  CAS  PubMed  Google Scholar 

  47. Lomonte B, Rangel J. Snake venom Lys49 myotoxins: from phospholipases A2 to non-enzymatic membrane disruptors. Toxicon. 2012;60:520–30. https://doi.org/10.1016/j.toxicon.2012.02.007.

    Article  CAS  PubMed  Google Scholar 

  48. Gutierrez J, Lomonte B, Leon G, Rucavado A, Chaves F, Angulo Y. Trends in snakebite envenomation therapy: scientific, technological and public health considerations. Curr Pharm Des. 2007;13:2935–50. https://doi.org/10.2174/138161207782023784.

    Article  CAS  PubMed  Google Scholar 

  49. Dong Z, Saikumar P, Weinberg JM, Venkatachalam MA. Calcium in cell injury and death. Annu Rev Pathol. 2006;1:405–34. https://doi.org/10.1146/annurev.pathol.1.110304.100218.

    Article  CAS  PubMed  Google Scholar 

  50. Gutiérrez J, Ownby CL, Odell GV. Pathogenesis of myonecrosis induced by crude venom and a myotoxin of Bothrops asper. Exp Mol Pathol. 1984;40:367–79. https://doi.org/10.1016/0014-4800(84)90054-6.

    Article  PubMed  Google Scholar 

  51. Harris JB, Cullen MJ. Muscle necrosis caused by snake venoms and toxins. Electron Microsc Rev. 1990;3:183–211. https://doi.org/10.1016/0892-0354(90)90001-9.

    Article  CAS  PubMed  Google Scholar 

  52. Gopalakrishnakone P, Dempster DW, Hawgood BJ, Elder HY. Cellular and mitochondrial changes induced in the structure of murine skeletal muscle by crotoxin, a neurotoxic phospholipase A2 complex. Toxicon. 1984;22:85–98. https://doi.org/10.1016/0041-0101(84)90141-7.

    Article  CAS  PubMed  Google Scholar 

  53. Montecucco C, Gutiérrez JM, Lomonte B. Cellular pathology induced by snake venom phospholipase A2 myotoxins and neurotoxins: common aspects of their mechanisms of action. Cell Mol Life Sci. 2008;65:2897–912. https://doi.org/10.1007/s00018-008-8113-3.

    Article  CAS  PubMed  Google Scholar 

  54. Gutiérrez J, Arce V, Brenes F, Chaves F. Changes in myofibrillar components after skeletal muscle necrosis induced by a myotoxin isolated from the venom of the snake Bothrops asper. Exp Mol Pathol. 1990;52:25–36. https://doi.org/10.1016/0014-4800(90)90055-I.

    Article  PubMed  Google Scholar 

  55. Vater R, Cullen MJ, Harris JB. The fate of desmin and titin during the degeneration and regeneration of the soleus muscle of the rat. Acta Neuropathol. 1992;84. https://doi.org/10.1007/BF00227821.

  56. Mukherjee AK, Ghosal SK, Maity CR. Some biochemical properties of Russell’s viper (Daboia russelli) venom from Eastern India: correlation with clinico-pathological manifestation in Russell’s viper bite. Toxicon. 2000;38:163–75. https://doi.org/10.1016/S0041-0101(99)00125-7.

    Article  CAS  Google Scholar 

  57. Kini RM. Anticoagulant proteins from snake venoms: structure, function and mechanism. Biochem J. 2006;397:377–87. https://doi.org/10.1042/BJ20060302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Saikia D, Thakur R, Mukherjee AK. An acidic phospholipase A2 (RVVA-PLA2-I) purified from Daboia russelli venom exerts its anticoagulant activity by enzymatic hydrolysis of plasma phospholipids and by non-enzymatic inhibition of factor Xa in a phospholipids/Ca2+ independent manner. Toxicon. 2011;57:841–50. https://doi.org/10.1016/j.toxicon.2011.02.018.

    Article  CAS  PubMed  Google Scholar 

  59. Saikia D, Majumdar S, Mukherjee AK. Mechanism of in vivo anticoagulant and haemolytic activity by a neutral phospholipase A2 purified from Daboia russelii russelii venom: Correlation with clinical manifestations in Russell’s Viper envenomed patients. Toxicon. 2013;76:291–300. https://doi.org/10.1016/j.toxicon.2013.10.001.

    Article  CAS  PubMed  Google Scholar 

  60. Kini RM. Structure–function relationships and mechanism of anticoagulant phospholipase A2 enzymes from snake venoms. Toxicon. 2005;45:1147–61. https://doi.org/10.1016/j.toxicon.2005.02.018.

    Article  CAS  PubMed  Google Scholar 

  61. Kini RM, Evans HJ. Structure-function relationships of phospholipases. The anticoagulant region of phospholipases A2. J Biol Chem. 1987;262:14402–7. https://doi.org/10.1016/S0021-9258(18)47808-8.

  62. Doley R, King GF, Mukherjee AK. Differential hydrolysis of erythrocyte and mitochondrial membrane phospholipids by two phospholipase A2 isoenzymes (NK-PLA2-I and NK-PLA2-II) from the venom of the Indian monocled cobra Naja kaouthia. Arch Biochem Biophys. 2004;425:1–13. https://doi.org/10.1016/j.abb.2004.02.007.

    Article  CAS  PubMed  Google Scholar 

  63. Stefansson S, Kini RM, Evans HJ. The inhibition of clotting complexes of the extrinsic coagulation cascade by the phospholipase A2 isoenzymes from venom. Thromb Res. 1989;55:481–91. https://doi.org/10.1016/0049-3848(89)90056-X.

    Article  CAS  PubMed  Google Scholar 

  64. AshisK M. A major phospholipase A2 from Daboia russelii russelii venom shows potent anticoagulant action via thrombin inhibition and binding with plasma phospholipids. Biochimie. 2014;99:153–61. https://doi.org/10.1016/j.biochi.2013.11.026.

    Article  CAS  Google Scholar 

  65. Dutta S, Gogoi D, Mukherjee AK. Anticoagulant mechanism and platelet deaggregation property of a non-cytotoxic, acidic phospholipase A2 purified from Indian cobra (Naja naja) venom: Inhibition of anticoagulant activity by low molecular weight heparin. Biochimie. 2015;110:93–106. https://doi.org/10.1016/j.biochi.2014.12.020.

    Article  CAS  PubMed  Google Scholar 

  66. Osipov A V., Filkin SYu, Makarova Y V., Tsetlin VI, Utkin YN. A new type of thrombin inhibitor, noncytotoxic phospholipase A2, from the Naja haje cobra venom. Toxicon. 2010;55:186–94. https://doi.org/10.1016/j.toxicon.2009.07.011.

  67. Fernandes CAH, Borges RJ, Lomonte B, Fontes MRM. A structure-based proposal for a comprehensive myotoxic mechanism of phospholipase A2-like proteins from viperid snake venoms. Biochimica et Biophysica Acta (BBA)—Proteins and Proteomics 2014;1844:2265–76. https://doi.org/10.1016/j.bbapap.2014.09.015.

  68. Teixeira CFP, Landucci ECT, Antunes E, Chacur M, Cury Y. Inflammatory effects of snake venom myotoxic phospholipases A2. Toxicon. 2003;42:947–62. https://doi.org/10.1016/j.toxicon.2003.11.006.

    Article  CAS  PubMed  Google Scholar 

  69. Bonfim VL, de Carvalho DD, Ponce-Soto LA, Kassab BH, Marangoni S. Toxicity of phospholipases A2 D49 (6–1 and 6–2) and K49 (Bj-VII) from Bothrops jararacussu venom. Cell Biol Toxicol. 2009;25:523–32. https://doi.org/10.1007/s10565-008-9106-6.

    Article  CAS  PubMed  Google Scholar 

  70. Dennis EA. Phospholipase A 2 in Eicosanoid Generation. Am J Respir Crit Care Med. 2000;161:S32–5. https://doi.org/10.1164/ajrccm.161.supplement_1.ltta-7.

  71. Murakami M, Shimbara S, Kambe T, Kuwata H, Winstead MV, Tischfield JA, et al. The functions of five distinct mammalian phospholipase A2s in regulating arachidonic acid release. J Biol Chem. 1998;273:14411–23. https://doi.org/10.1074/jbc.273.23.14411.

    Article  CAS  PubMed  Google Scholar 

  72. Murakami M, Koduri RS, Enomoto A, Shimbara S, Seki M, Yoshihara K, et al. Distinct arachidonate-releasing functions of mammalian secreted phospholipase A2s in human embryonic kidney 293 and rat mastocytoma RBL-2H3 cells through heparan sulfate shuttling and external plasma membrane mechanisms. J Biol Chem. 2001;276:10083–96. https://doi.org/10.1074/jbc.M007877200.

    Article  CAS  PubMed  Google Scholar 

  73. Granata F, Nardicchi V, Loffredo S, Frattini A, Ilaria Staiano R, Agostini C, et al. Secreted phospholipases A2: a proinflammatory connection between macrophages and mast cells in the human lung. Immunobiology. 2009;214:811–21. https://doi.org/10.1016/j.imbio.2009.06.006.

    Article  CAS  PubMed  Google Scholar 

  74. Triggiani M, Granata F, Frattini A, Marone G. Activation of human inflammatory cells by secreted phospholipases A2. Biochimica et Biophysica Acta (BBA)—Molecular and Cell Biology of Lipids 2006;1761:1289–300. https://doi.org/10.1016/j.bbalip.2006.07.003.

  75. Hung HT, Höjer J, Du NT. Clinical features of 60 consecutive ICU-treated patients envenomed by Bungarus multicinctus. Southeast Asian J Trop Med Public Health. 2009;40:518–24.

    PubMed  Google Scholar 

  76. Bickler PE, Abouyannis M, Bhalla A, Lewin MR. Neuromuscular weakness and paralysis produced by snakebite envenoming: mechanisms and proposed standards for clinical assessment. Toxins (Basel). 2023;15:49. https://doi.org/10.3390/toxins15010049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kularatne SAM, Budagoda BDSS, Gawarammana IB, Kularatne WKS. Epidemiology, clinical profile and management issues of cobra (Naja naja) bites in Sri Lanka: first authenticated case series. Trans R Soc Trop Med Hyg. 2009;103:924–30. https://doi.org/10.1016/j.trstmh.2009.04.002.

    Article  CAS  PubMed  Google Scholar 

  78. Ranawaka UK, Lalloo DG, de Silva HJ. Neurotoxicity in snakebite—the limits of our knowledge. PLoS Negl Trop Dis. 2013;7: e2302. https://doi.org/10.1371/journal.pntd.0002302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pungerčar J, Križaj I. Understanding the molecular mechanism underlying the presynaptic toxicity of secreted phospholipases A2. Toxicon. 2007;50:871–92. https://doi.org/10.1016/j.toxicon.2007.07.025.

    Article  CAS  PubMed  Google Scholar 

  80. Garcia-Martinez V, Gimenez-Molina Y, Villanueva J, Darios FD, Davletov B, Gutiérrez LM. Emerging evidence for the modulation of exocytosis by signalling lipids. FEBS Lett. 2018;592:3493–503. https://doi.org/10.1002/1873-3468.13178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Schaechter J, Benowitz L. Activation of protein kinase C by arachidonic acid selectively enhances the phosphorylation of GAP-43 in nerve terminal membranes. J Neurosci. 1993;13:4361–71. https://doi.org/10.1523/JNEUROSCI.13-10-04361.1993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. St. John PA, Gordon H. Agonists cause endocytosis of nicotinic acetylcholine receptors on cultured myotubes. J Neurobiol. 2001;49:212–23. https://doi.org/10.1002/neu.1076.

  83. Ferreira BL, Santos DO, dos Santos AL, Rodrigues CR, de Freitas CC, Cabral LM, et al. Comparative analysis of Viperidae venoms antibacterial profile: a short communication for proteomics. Evidence-Based Complementary Alternative Med. 2011;2011:1–4. https://doi.org/10.1093/ecam/nen052.

    Article  Google Scholar 

  84. de Oliveira Junior NG, e Silva Cardoso MH, Franco OL. Snake venoms: attractive antimicrobial proteinaceous compounds for therapeutic purposes. Cell Mol Life Sci. 2013;70:4645–58. https://doi.org/10.1007/s00018-013-1345-x.

  85. Charvat RA, Strobel RM, Pasternak MA, Klass SM, Rheubert JL. Analysis of snake venom composition and antimicrobial activity. Toxicon. 2018;150:151–67. https://doi.org/10.1016/j.toxicon.2018.05.016.

    Article  CAS  PubMed  Google Scholar 

  86. Almeida JR, Palacios ALV, Patiño RSP, Mendes B, Teixeira CAS, Gomes P, et al. Harnessing snake venom phospholipases A 2 to novel approaches for overcoming antibiotic resistance. Drug Dev Res. 2019;80:68–85. https://doi.org/10.1002/ddr.21456.

    Article  CAS  PubMed  Google Scholar 

  87. Perumal Samy R, Stiles BG, Franco OL, Sethi G, Lim LHK. Animal venoms as antimicrobial agents. Biochem Pharmacol. 2017;134:127–38. https://doi.org/10.1016/j.bcp.2017.03.005.

    Article  CAS  PubMed  Google Scholar 

  88. Petricevich VL, Mendonça RZ. Inhibitory potential of Crotalus durissus terrificus venom on measles virus growth. Toxicon. 2003;42:143–53. https://doi.org/10.1016/S0041-0101(03)00124-7.

    Article  CAS  PubMed  Google Scholar 

  89. Muller VD, Soares RO, dos Santos-Junior NN, Trabuco AC, Cintra AC, Figueiredo LT, et al. Phospholipase A2 isolated from the venom of crotalus durissus terrificus inactivates dengue virus and other enveloped viruses by disrupting the viral envelope. PLoS ONE. 2014;9: e112351. https://doi.org/10.1371/journal.pone.0112351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Shimizu JF, Pereira CM, Bittar C, Batista MN, Campos GRF, da Silva S, et al. Multiple effects of toxins isolated from Crotalus durissus terrificus on the hepatitis C virus life cycle. PLoS ONE. 2017;12: e0187857. https://doi.org/10.1371/journal.pone.0187857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Magaldi S, Girón ME, Aguilar I, Rodriguez-Acosta A. Antifungal activity of Crotalus durissus cumanensis venom. Mycoses. 2002;45:19–21. https://doi.org/10.1046/j.1439-0507.2002.00696.x.

    Article  CAS  PubMed  Google Scholar 

  92. Sobrinho J, Simões-Silva R, Holanda R, Alfonso J, Gomez A, Zanchi F, et al. Antitumoral potential of snake venom phospholipases A2 and synthetic peptides. Curr Pharm Biotechnol. 2016;17:1201–12. https://doi.org/10.2174/1389201017666160808154250.

    Article  CAS  PubMed  Google Scholar 

  93. Zouari-Kessentini R, Luis J, Karray A, Kallech-Ziri O, Srairi-Abid N, Bazaa A, et al. Two purified and characterized phospholipases A2 from Cerastes cerastes venom, that inhibit cancerous cell adhesion and migration. Toxicon. 2009;53:444–53. https://doi.org/10.1016/j.toxicon.2009.01.003.

    Article  CAS  PubMed  Google Scholar 

  94. Kessentini-Zouari R, Jebali J, Taboubi S, Srairi-Abid N, Morjen M, Kallech-Ziri O, et al. CC-PLA2-1 and CC-PLA2-2, two Cerastes cerastes venom-derived phospholipases A2, inhibit angiogenesis both in vitro and in vivo. Lab Invest. 2010;90:510–9. https://doi.org/10.1038/labinvest.2009.137.

    Article  CAS  PubMed  Google Scholar 

  95. Bazaa A, Pasquier E, Defilles C, Limam I, Kessentini-Zouari R, Kallech-Ziri O, et al. MVL-PLA2, a snake venom phospholipase A2, inhibits angiogenesis through an increase in microtubule dynamics and disorganization of focal adhesions. PLoS ONE. 2010;5: e10124. https://doi.org/10.1371/journal.pone.0010124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bazaa A, Luis J, Srairi-Abid N, Kallech-Ziri O, Kessentini-Zouari R, Defilles C, et al. MVL-PLA2, a phospholipase A2 from Macrovipera lebetina transmediterranea venom, inhibits tumor cells adhesion and migration. Matrix Biol. 2009;28:188–93. https://doi.org/10.1016/j.matbio.2009.03.007.

    Article  CAS  PubMed  Google Scholar 

  97. Roberto PG, Kashima S, Marcussi S, Pereira JO, Astolfi-Filho S, Nomizo A, et al. Cloning and identification of a complete cDNA coding for a bactericidal and antitumoral acidic phospholipase A2 from Bothrops jararacussu Venom. Protein J. 2004;23:273–85. https://doi.org/10.1023/B:JOPC.0000027852.92208.60.

    Article  CAS  PubMed  Google Scholar 

  98. Gebrim LC, Marcussi S, Menaldo DL, de Menezes CSR, Nomizo A, Hamaguchi A, et al. Antitumor effects of snake venom chemically modified Lys49 phospholipase A2-like BthTX-I and a synthetic peptide derived from its C-terminal region. Biologicals. 2009;37:222–9. https://doi.org/10.1016/j.biologicals.2009.01.010.

    Article  CAS  PubMed  Google Scholar 

  99. Araya C, Lomonte B. Antitumor effects of cationic synthetic peptides derived from Lys49 phospholipase A2 homologues of snake venoms. Cell Biol Int. 2007;31:263–8. https://doi.org/10.1016/j.cellbi.2006.11.007.

    Article  CAS  PubMed  Google Scholar 

  100. Khunsap S, Pakmanee N, Khow O, Chanhome L, Sitprija V, Suntravat M, et al. Purification of a phospholipase A(2) from Daboia russelii siamensis venom with anticancer effects. J Venom Res. 2011;2:42–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Xie C, Slagboom J, Albulescu L-O, Somsen GW, Vonk FJ, Casewell NR, et al. Neutralising effects of small molecule toxin inhibitors on nanofractionated coagulopathic Crotalinae snake venoms. Acta Pharm Sin B. 2020;10:1835–45. https://doi.org/10.1016/j.apsb.2020.09.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Nicholls SJ, Kastelein JJP, Schwartz GG, Bash D, Rosenson RS, Cavender MA, et al. Varespladib and cardiovascular events in patients with an acute coronary syndrome. JAMA. 2014;311:252. https://doi.org/10.1001/jama.2013.282836.

    Article  CAS  PubMed  Google Scholar 

  103. Shaposhnik Z, Wang X, Trias J, Fraser H, Lusis AJ. The synergistic inhibition of atherogenesis in apoE−/− mice between pravastatin and the sPLA2 inhibitor varespladib (A-002). J Lipid Res. 2009;50:623–9. https://doi.org/10.1194/jlr.M800361-JLR200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Knudsen C, Laustsen A. Recent advances in next generation snakebite antivenoms. Trop Med Infect Dis. 2018;3:42. https://doi.org/10.3390/tropicalmed3020042.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Félix-Silva J, Silva-Junior AA, Zucolotto SM, Fernandes-Pedrosa M de F. Medicinal Plants for the Treatment of Local Tissue Damage Induced by Snake Venoms: An Overview from Traditional Use to Pharmacological Evidence. Evidence-Based Complementary and Alternative Medicine 2017;2017:1–52. https://doi.org/10.1155/2017/5748256.

  106. Patrão-Neto FC, Tomaz MA, Strauch MA, Monteiro-Machado M, Rocha-Junior JRDS, Borges PA, et al. Dexamethasone antagonizes the in vivo myotoxic and inflammatory effects of Bothrops venoms. Toxicon. 2013;69:55–64. https://doi.org/10.1016/j.toxicon.2013.01.023.

    Article  CAS  PubMed  Google Scholar 

  107. Lewin MR, Carter RW, Matteo IA, Samuel SP, Rao S, Fry BG, et al. Varespladib in the treatment of snakebite envenoming: development history and preclinical evidence supporting advancement to clinical trials in patients bitten by venomous snakes. Toxins (Basel). 2022;14:783. https://doi.org/10.3390/toxins14110783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Rosenson RS, Hurt-Camejo E. Phospholipase A2 enzymes and the risk of atherosclerosis. Eur Heart J. 2012;33:2899–909. https://doi.org/10.1093/eurheartj/ehs148.

    Article  CAS  PubMed  Google Scholar 

  109. Knudsen C, Ledsgaard L, Dehli RI, Ahmadi S, Sørensen CV, Laustsen AH. Engineering and design considerations for next-generation snakebite antivenoms. Toxicon. 2019;167:67–75. https://doi.org/10.1016/j.toxicon.2019.06.005.

    Article  CAS  PubMed  Google Scholar 

  110. Kazandjian TD, Arrahman A, Still KBM, Somsen GW, Vonk FJ, Casewell NR, et al. Anticoagulant activity of Naja nigricollis venom is mediated by phospholipase A2 toxins and inhibited by varespladib. Toxins (Basel). 2021;13:302. https://doi.org/10.3390/toxins13050302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Silva-Carvalho R, Gaspar MZ, Quadros LHB, Lobo LGG, Giuffrida R, Santarém CL, et al. Partial efficacy of a Brazilian coralsnake antivenom and varespladib in neutralizing distinct toxic effects induced by sublethal Micrurus dumerilii carinicauda envenoming in rats. Toxicon. 2022;213:99–104. https://doi.org/10.1016/j.toxicon.2022.04.014.

    Article  CAS  PubMed  Google Scholar 

  112. Bryan-Quirós W, Fernández J, Gutiérrez JM, Lewin MR, Lomonte B. Neutralizing properties of LY315920 toward snake venom group I and II myotoxic phospholipases A2. Toxicon. 2019;157:1–7. https://doi.org/10.1016/j.toxicon.2018.11.292.

    Article  CAS  PubMed  Google Scholar 

  113. Dashevsky D, Bénard-Valle M, Neri-Castro E, Youngman NJ, Zdenek CN, Alagón A, et al. Anticoagulant Micrurus venoms: targets and neutralization. Toxicol Lett. 2021;337:91–7. https://doi.org/10.1016/j.toxlet.2020.11.010.

    Article  CAS  PubMed  Google Scholar 

  114. Salvador GHM, Pinto ÊKR, Ortolani PL, Fortes-Dias CL, Cavalcante WLG, Soares AM, et al. Structural basis of the myotoxic inhibition of the Bothrops pirajai PrTX-I by the synthetic varespladib. Biochimie. 2023;207:1–10. https://doi.org/10.1016/j.biochi.2022.11.006.

    Article  CAS  PubMed  Google Scholar 

  115. Lewin M, Samuel S, Merkel J, Bickler P. Varespladib (LY315920) appears to be a potent, broad-spectrum, inhibitor of snake venom phospholipase A2 and a possible pre-referral treatment for envenomation. Toxins (Basel). 2016;8:248. https://doi.org/10.3390/toxins8090248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wang Y, Zhang J, Zhang D, Xiao H, Xiong S, Huang C. Exploration of the inhibitory potential of varespladib for snakebite envenomation. Molecules. 2018;23:391. https://doi.org/10.3390/molecules23020391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Xiao H, Li H, Zhang D, Li Y, Sun S, Huang C. Inactivation of venom PLA2 alleviates myonecrosis and facilitates muscle regeneration in envenomed mice: a time course observation. Molecules. 2018;23:1911. https://doi.org/10.3390/molecules23081911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Lewin M, Gutiérrez J, Samuel S, Herrera M, Bryan-Quirós W, Lomonte B, et al. Delayed oral LY333013 rescues mice from highly neurotoxic, lethal doses of papuan taipan (Oxyuranus scutellatus) venom. Toxins (Basel). 2018;10:380. https://doi.org/10.3390/toxins10100380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Lewin M, Gilliam L, Gilliam J, Samuel S, Bulfone T, Bickler P, et al. Delayed LY333013 (Oral) and LY315920 (Intravenous) reverse severe neurotoxicity and rescue juvenile pigs from lethal doses of micrurus fulvius (Eastern Coral Snake) venom. Toxins (Basel). 2018;10:479. https://doi.org/10.3390/toxins10110479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Bittenbinder MA, Zdenek CN, op den Brouw B, Youngman NJ, Dobson JS, Naude A, et al. Coagulotoxic Cobras: Clinical Implications of Strong Anticoagulant Actions of African Spitting Naja Venoms That Are Not Neutralised by Antivenom but Are by LY315920 (Varespladib). Toxins (Basel) 2018;10:516. https://doi.org/10.3390/toxins10120516.

  121. Gutiérrez JM, Lewin MR, Williams DavidJ, Lomonte B. Varespladib (LY315920) and Methyl Varespladib (LY333013) Abrogate or Delay Lethality Induced by Presynaptically Acting Neurotoxic Snake Venoms. Toxins (Basel) 2020;12:131. https://doi.org/10.3390/toxins12020131.

  122. Zinenko O, Tovstukha I, Korniyenko Y. PLA2 inhibitor varespladib as an alternative to the antivenom treatment for bites from Nikolsky’s viper vipera berus nikolskii. Toxins (Basel). 2020;12:356. https://doi.org/10.3390/toxins12060356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zdenek CN, Youngman NJ, Hay C, Dobson J, Dunstan N, Allen L, et al. Anticoagulant activity of black snake (Elapidae: Pseudechis) venoms: Mechanisms, potency, and antivenom efficacy. Toxicol Lett. 2020;330:176–84. https://doi.org/10.1016/j.toxlet.2020.05.014.

    Article  CAS  PubMed  Google Scholar 

  124. Xie C, Albulescu L-O, Still KBM, Slagboom J, Zhao Y, Jiang Z, et al. Varespladib inhibits the phospholipase A2 and coagulopathic activities of venom components from hemotoxic snakes. Biomedicines. 2020;8:165. https://doi.org/10.3390/biomedicines8060165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Xie C, Albulescu L-O, Bittenbinder MA, Somsen GW, Vonk FJ, Casewell NR, et al. Neutralizing effects of small molecule inhibitors and metal chelators on coagulopathic viperinae snake venom toxins. Biomedicines. 2020;8:297. https://doi.org/10.3390/biomedicines8090297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Alangode A, Rajan K, Nair BG. Snake antivenom: challenges and alternate approaches. Biochem Pharmacol. 2020;181: 114135. https://doi.org/10.1016/j.bcp.2020.114135.

    Article  CAS  PubMed  Google Scholar 

  127. Albulescu L-O, Xie C, Ainsworth S, Alsolaiss J, Crittenden E, Dawson CA, et al. A therapeutic combination of two small molecule toxin inhibitors provides broad preclinical efficacy against viper snakebite. Nat Commun. 2020;11:6094. https://doi.org/10.1038/s41467-020-19981-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Liu C-C, Wu C-J, Hsiao Y-C, Yang Y-H, Liu K-L, Huang G-J, et al. Snake venom proteome of Protobothrops mucrosquamatus in Taiwan: Delaying venom-induced lethality in a rodent model by inhibition of phospholipase A2 activity with varespladib. J Proteomics. 2021;234: 104084. https://doi.org/10.1016/j.jprot.2020.104084.

    Article  CAS  PubMed  Google Scholar 

  129. Salvador GHM, Borges RJ, Lomonte B, Lewin MR, Fontes MRM. The synthetic varespladib molecule is a multi-functional inhibitor for PLA2 and PLA2-like ophidic toxins. Biochimica et Biophysica Acta (BBA)—General Subjects 2021;1865:129913. https://doi.org/10.1016/j.bbagen.2021.129913.

  130. Gutierres PG, Pereira DR, Vieira NL, Arantes LF, Silva NJ, Torres-Bonilla KA, et al. Action of Varespladib (LY-315920), a Phospholipase A2 Inhibitor, on the Enzymatic, Coagulant and Haemorrhagic Activities of Lachesis muta rhombeata (South-American Bushmaster) Venom. Front Pharmacol. 2022;12. https://doi.org/10.3389/fphar.2021.812295.

  131. Maciel FV, Ramos Pinto ÊK, Valério Souza NM, Gonçalves de Abreu TA, Ortolani PL, Fortes-Dias CL, et al. Varespladib (LY315920) prevents neuromuscular blockage and myotoxicity induced by crotoxin on mouse neuromuscular preparations. Toxicon. 2021;202:40–5. https://doi.org/10.1016/j.toxicon.2021.09.009.

  132. Vuong NT, Jackson TNW, Wright CE. Role of Phospholipases A2 in Vascular Relaxation and Sympatholytic Effects of Five Australian Brown Snake, Pseudonaja spp., Venoms in Rat Isolated Tissues. Front Pharmacol. 2021;12. https://doi.org/10.3389/fphar.2021.754304.

  133. Silva-Carvalho R, Gaspar MZ, Quadros LHB, Lobo LGG, Rogério LM, Santos NTS, et al. In vivo treatment with varespladib, a phospholipase A2 inhibitor, prevents the peripheral neurotoxicity and systemic disorders induced by Micrurus corallinus (coral snake) venom in rats. Toxicol Lett. 2022;356:54–63. https://doi.org/10.1016/j.toxlet.2021.11.003.

    Article  CAS  PubMed  Google Scholar 

  134. Gomes A, Das R, Sarkhel S, Mishra R, Mukherjee S, Bhattacharya S. Herbs and herbal constituents active against snake bite. Indian J Exp Biol. 2010;48:865–78.

    PubMed  Google Scholar 

  135. Gómez-Betancur I, Gogineni V, Salazar-Ospina A, León F. Perspective on the therapeutics of anti-snake venom. Molecules. 2019;24:3276. https://doi.org/10.3390/molecules24183276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Liaqat A, Mallhi TH, Khan YH, Khokhar A, Chaman S, Ali M. Anti-Snake Venom Property of Medicinal Plants: A Comprehensive Review of Literature. Brazilian Journal of Pharmaceutical Sciences 2022;58. https://doi.org/10.1590/s2175-97902022e191124.

  137. Molander M, Staerk D, Mørck Nielsen H, Brandner JM, Diallo D, Kusamba Zacharie C, et al. Investigation of skin permeation, ex vivo inhibition of venom-induced tissue destruction, and wound healing of African plants used against snakebites. J Ethnopharmacol. 2015;165:1–8. https://doi.org/10.1016/j.jep.2015.02.014.

    Article  CAS  PubMed  Google Scholar 

  138. Shrivastava R, Singh P, Yasir M, Hazarika R, Sugunan S. A review on venom enzymes neutralizing ability of secondary metabolites from medicinal plants. J Pharmacopuncture. 2017;20:173–8. https://doi.org/10.3831/KPI.2017.20.020.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Raghavan S, Jayaraman G. Synergistic effect of flavonoids combined with antivenom on neutralisation of Naja naja venom. Asian Pac J Trop Biomed. 2021;11:298. https://doi.org/10.4103/2221-1691.309665.

    Article  CAS  Google Scholar 

  140. Tomaz MA, Patrão-Neto FC, Melo PA. Plant Compounds with Antiophidic Activities, Their Discovery History, and Current and Proposed Applications. Plant Toxins, Dordrecht: Springer Netherlands; 2016, p. 1–16. https://doi.org/10.1007/978-94-007-6728-7_1-1.

  141. LS Guimaraes C, S Moreira-Dill L, S Fernandes R, R Costa T, IS Hage-Melim L, Marcussi S, et al. Biodiversity as a source of bioactive compounds against snakebites. Current medicinal chemistry. Curr Med Chem 2014;21:2952–79.

  142. Torres MCM, Pinto F das CL, Braz-Filho R, Silveira ER, Pessoa ODL, Jorge RJB, et al. Antiophidic Solanidane Steroidal Alkaloids from Solanum campaniforme. J Nat Prod 2011;74:2168–73. https://doi.org/10.1021/np200479a.

  143. Arias SP, de Jesús RB, Lobo-Echeverri T, Ramos RS, Hyslop S, Rangel V. Effects of two fractions of swietenia macrophylla and catechin on muscle damage induced by bothropsvenom and PLA2. Toxins (Basel). 2019;11:40. https://doi.org/10.3390/toxins11010040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. da Silva AJM, Coelho AL, Simas ABC, Moraes RAM, Pinheiro DA, Fernandes FFA, et al. Synthesis and pharmacological evaluation of prenylated and benzylated pterocarpans against snake venom. Bioorg Med Chem Lett. 2004;14:431–5. https://doi.org/10.1016/j.bmcl.2003.10.044.

    Article  CAS  PubMed  Google Scholar 

  145. Henrique F. Vale L, M. Mendes M, S. Fernandes R, R. Costa T, I. S.Hage-Melim L, A. Sousa M, et al. Protective Effect of Schizolobium parahyba Flavonoids Against Snake Venoms and Isolated Toxins. Curr Top Med Chem 2011;11:2566–77. https://doi.org/10.2174/156802611797633438.

  146. Ximenes RM, Rabello MM, Araújo RM, Silveira ER, Fagundes FHR, Diz-Filho EBS, et al. Inhibition of neurotoxic secretory phospholipases A 2 enzymatic, edematogenic, and myotoxic activities by harpalycin 2, an Isoflavone Isolated from Harpalyce brasiliana Benth. Evidence-Based Complement Alternative Med. 2012;2012:1–9. https://doi.org/10.1155/2012/987517.

    Article  Google Scholar 

  147. Gómez-Betancur I, Pereañez JA, Patiño AC, Benjumea D. Inhibitory effect of pinostrobin from Renealmia alpinia, on the enzymatic and biological activities of a PLA2. Int J Biol Macromol. 2016;89:35–42. https://doi.org/10.1016/j.ijbiomac.2016.04.042.

    Article  CAS  PubMed  Google Scholar 

  148. Ribeiro AEAS, Soares JMD, Silva HAL, Wanderley CW de S, Moura CA, de Oliveira-Junior RG, et al. Inhibitory effects of Morus nigra L. (Moraceae) against local paw edema and mechanical hypernociception induced by Bothrops jararacussu snake venom in mice. Biomed. Pharmacother. 2019;111:1046–56. https://doi.org/10.1016/j.biopha.2019.01.011.

  149. Gopi K, Anbarasu K, Renu K, Jayanthi S, Vishwanath BS, Jayaraman G. Quercetin-3-O-rhamnoside from Euphorbia hirta protects against snake Venom induced toxicity. Biochimica et Biophysica Acta (BBA) - General Subjects 2016;1860:1528–40. https://doi.org/10.1016/j.bbagen.2016.03.031.

  150. Sachetto ATA, Rosa JG, Santoro ML. Rutin (quercetin-3-rutinoside) modulates the hemostatic disturbances and redox imbalance induced by Bothrops jararaca snake venom in mice. PLoS Negl Trop Dis. 2018;12: e0006774. https://doi.org/10.1371/journal.pntd.0006774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Saha K, Gomes A. Russell’s viper venom induced nephrotoxicity, myotoxicity, and hepatotoxicity—Neutralization with gold nanoparticle conjugated 2-hydroxy-4-methoxy benzoic acid in vivo. Indian J Exp Biol. 2017;55:7–14.

    CAS  PubMed  Google Scholar 

  152. Toyama DO, Ferreira MJP, Romoff P, Fávero OA, Gaeta HH, Toyama MH. Effect of chlorogenic acid (5-Caffeoylquinic Acid) isolated from Baccharis oxyodonta on the structure and pharmacological activities of secretory phospholipase A2 from Crotalus durissus terrificus. Biomed Res Int. 2014;2014:1–10. https://doi.org/10.1155/2014/726585.

    Article  CAS  Google Scholar 

  153. Gopi K, Renu K, Sannanaik Vishwanath B, Jayaraman G. Protective effect of Euphorbia hirta and its components against snake venom induced lethality. J Ethnopharmacol. 2015;165:180–90. https://doi.org/10.1016/j.jep.2015.02.044.

    Article  CAS  PubMed  Google Scholar 

  154. Costa TR, Francisco AF, Cardoso FF, Moreira-Dill LS, Fernandes CAH, Gomes AAS, et al. Gallic acid anti-myotoxic activity and mechanism of action, a snake venom phospholipase A2 toxin inhibitor, isolated from the medicinal plant Anacardium humile. Int J Biol Macromol. 2021;185:494–512. https://doi.org/10.1016/j.ijbiomac.2021.06.163.

    Article  CAS  PubMed  Google Scholar 

  155. Ticli FK, Hage LIS, Cambraia RS, Pereira PS, Magro ÂJ, Fontes MRM, et al. Rosmarinic acid, a new snake venom phospholipase A2 inhibitor from Cordia verbenacea (Boraginaceae): antiserum action potentiation and molecular interaction. Toxicon. 2005;46:318–27. https://doi.org/10.1016/j.toxicon.2005.04.023.

    Article  CAS  PubMed  Google Scholar 

  156. Gomes A, Saha A, Chatterjee I, Chakravarty AK. Viper and cobra venom neutralization by β-sitosterol and stigmasterol isolated from the root extract of Pluchea indica Less. (Asteraceae). Phytomedicine 2007;14:637–43. https://doi.org/10.1016/j.phymed.2006.12.020.

  157. Le Z, Li X, Yuan P, Liu P, Huang C. Orthogonal optimization of prokaryotic expression of a natural snake venom phospholipase A2 inhibitor from Sinonatrix annularis. Toxicon. 2015;108:264–71. https://doi.org/10.1016/j.toxicon.2015.10.018.

    Article  CAS  PubMed  Google Scholar 

  158. Gimenes SNC, Aglas L, Wildner S, Huber S, Silveira ACP, Lopes DS, et al. Biochemical and functional characterization of a new recombinant phospholipase A2 inhibitor from Crotalus durissus collilineatus snake serum. Int J Biol Macromol. 2020;164:1545–53. https://doi.org/10.1016/j.ijbiomac.2020.07.221.

    Article  CAS  PubMed  Google Scholar 

  159. Santos-Filho NA, Santos CT. Alpha-type phospholipase A2 inhibitors from snake blood. J. Venom. Anim. Toxins Incl. Trop. Dis. 2017;23:19. https://doi.org/10.1186/s40409-017-0110-2.

  160. Rocha SLG, Neves-Ferreira AGC, Trugilho MRO, Angulo Y, Lomonte B, Valente RH, et al. Screening for target toxins of the antiophidic protein DM64 through a gel-based interactomics approach. J Proteomics. 2017;151:204–13. https://doi.org/10.1016/j.jprot.2016.05.020.

    Article  CAS  PubMed  Google Scholar 

  161. Campos PC, de Melo LA, Dias GLF, Fortes-Dias CL. Endogenous phospholipase A2 inhibitors in snakes: a brief overview. J. Venom. Anim. Toxins Incl. Trop. Dis. 2016;22:37. https://doi.org/10.1186/s40409-016-0092-5.

  162. Santos-Filho NA, Silveira LB, Boldrini-França J. Myotoxin Inhibitors. Toxins and Drug Discovery, Dordrecht: Springer Netherlands; 2015, p. 1–24. https://doi.org/10.1007/978-94-007-6726-3_12-1.

  163. Fortes-Dias CL, Ortolani PL, Fernandes CAH, Lobo KR, Melo LA de, Borges MH, et al. Insights on the structure of native CNF, an endogenous phospholipase A2 inhibitor from Crotalus durissus terrificus, the South American rattlesnake. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2014;1844:1569–79. https://doi.org/10.1016/j.bbapap.2014.05.001.

Download references

Funding

This research is funded by the ICMR-National Institute of Traditional Medicine, Belagavi, India.

Author information

Authors and Affiliations

Authors

Contributions

GHS: Main worker, designing of work, writing the original draft. KH: Data curation and review. JD: Data curation and review. VSP: Review and drafting. DRH: Supervision, concept, data curation, and review. PB: Co-Supervision. RKM: Review. MB: Review. SR: Co-supervision and review.

Corresponding authors

Correspondence to Darasaguppe R. Harish or Prakash Biradar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sampat, G.H., Hiremath, K., Dodakallanavar, J. et al. Unraveling snake venom phospholipase A2: an overview of its structure, pharmacology, and inhibitors. Pharmacol. Rep 75, 1454–1473 (2023). https://doi.org/10.1007/s43440-023-00543-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-023-00543-8

Keywords

Navigation