Skip to main content
Log in

Overview of yeast environmental stress response pathways and the development of tolerant yeasts

  • Review
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

Abstract

Yeast is widely used for industrial production of various types of products, such as ethanol and enzymes. However, its fermentation efficiency is strongly reduced by harmful environmental stresses. Specifically, harmful environmental stresses damage important cellular components, such as cell wall, cell membrane, proteins, etc. Then, these damages cause cellular metabolic disorders or even death. In the past decades, there has been a portfolio of studies on the environmental stress tolerance of yeasts, which mainly aimed at cell damages caused by different environmental stresses, different ways to improve yeast environmental stress tolerance or a tolerance mechanism for certain environmental stress. However, a comprehensive overview of how yeasts respond to environmental stresses is lacking, and the correlation of tolerance mechanism between different environmental stresses is unclear. In this review, we summarized the general damages induced by most of environmental stresses, the existing major mechanisms of environmental stress tolerance from the perspective of key signalling pathways, and the common ways to improve the resistance to environmental stresses in yeast cells. The tolerance mechanisms of yeast cells to different environmental stresses are diverse, but sometimes they share the same signalling pathway. Cells use sensors on the cell surface to recognize environmental stresses and transmit signals to the nucleus to cause changes in gene expression. By summarizing the main signalling pathways, including MAPK pathway, cAMP/PKA pathway, YAP1/SKN7 pathway, it will provide a powerful reference for future efforts to promote yeast environmental stress tolerance and study yeast tolerance mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nielsen J, Keasling JD. Engineering cellular metabolism. Cell. 2016;164:1185–97. https://doi.org/10.1016/j.cell.2016.02.004.

    Article  CAS  Google Scholar 

  2. Vincenz L, Hart FU. Sugarcoating ER stress. Cell. 2014;156:1125–7. https://doi.org/10.1016/j.cell.2014.02.035.

    Article  CAS  PubMed  Google Scholar 

  3. Yu QL, Zhang B, Li JR, Zhang B, Wang HG, Li MC. Endoplasmic reticulum-derived reactive oxygen species (ROS) is involved in toxicity of cell wall stress to Candida albicans. Free Radic Biol Med. 2016;99:572–83. https://doi.org/10.1016/j.freeradbiomed.2016.09.014.

    Article  CAS  PubMed  Google Scholar 

  4. Kawanishi S, Hiraku Y, Oikawa S. Mechanism of guanine-specific DNA damage by oxidative stress and its role in carcinogenesis and aging. Mutat Res-Rev Mutat Res. 2001;488:65–76. https://doi.org/10.1016/s1383-5742(00)00059-4.

    Article  CAS  Google Scholar 

  5. Yan S, Sorrell M, Berman Z. Functional interplay between ATM/ATR-mediated DNA damage response and DNA repair pathways in oxidative stress. Cell Mol Life Sci. 2014;71:3951–67. https://doi.org/10.1007/s00018-014-1666-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Babazadeh R, Adiels CB, Smedh M, Petelenz-Kurdziel E, Goksor M, Hohmann S. Osmostress-induced cell volume loss delays yeast Hog1 signaling by limiting diffusion processes and by Hog1-specific effects. PLoS ONE. 2013;8:12. https://doi.org/10.1371/journal.pone.0080901.

    Article  CAS  Google Scholar 

  7. Hohmann S. Osmotic stress signaling and osmoadaptation in Yeasts. Microbiol Mol Biol Rev. 2002;66:300. https://doi.org/10.1128/mmbr.66.2.300-372.2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Miermont A, Waharte F, Hu SQ, McClean MN, Bottani S, Leon S, Hersen P. Severe osmotic compression triggers a slowdown of intracellular signaling, which can be explained by molecular crowding. Proc Natl Acad Sci USA. 2013;110:5725–30. https://doi.org/10.1073/pnas.1215367110.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Suzuki T, Sugiyama M, Wakazono K, Kaneko Y, Harashima S. Lactic-acid stress causes vacuolar fragmentation and impairs intracellular amino-acid homeostasis in Saccharomyces cerevisiae. J Biosci Bioeng. 2012;113:421–30. https://doi.org/10.1016/j.jbiosc.2011.11.010.

    Article  CAS  PubMed  Google Scholar 

  10. Matsushika A, Sawayama S. Characterization of a recombinant flocculent saccharomyces cerevisiae strain that co-ferments glucose and xylose: II. Influence of pH and acetic acid on ethanol production. Appl Biochem Biotechnol. 2012;168:2094–104. https://doi.org/10.1007/s12010-012-9920-4.

    Article  CAS  PubMed  Google Scholar 

  11. Herrero E, Ros J, Belli G, Cabiscol E. Redox control and oxidative stress in yeast cells. BBA-Gen Subjects. 2008;1780:1217–35. https://doi.org/10.1016/j.bbagen.2007.12.004.

    Article  CAS  Google Scholar 

  12. Hiraishi H, Mochizuki M, Takagi H. Enhancement of stress tolerance in Saccharomyces cerevisiae by overexpression of ubiquitin ligase Rsp5 and ubiquitin-conjugating enzymes. Biosci Biotechnol Biochem. 2006;70:2762–5. https://doi.org/10.1271/bbb.60250.

    Article  CAS  PubMed  Google Scholar 

  13. Zhao XQ, Bai FW. Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production. J Biotechnol. 2009;144:23–30. https://doi.org/10.1016/j.jbiotec.2009.05.001.

    Article  CAS  PubMed  Google Scholar 

  14. Piecuch A, Oblak E. Mechanisms of yeast resistance to environmental stress. Postepy Hig Med Dosw. 2013;67:238–54. https://doi.org/10.5604/17322693.1043394.

    Article  Google Scholar 

  15. Saini P, Beniwal A, Kokkiligadda A, Vij S. Response and tolerance of yeast to changing environmental stress during ethanol fermentation. Process Biochem. 2018;72:1–12. https://doi.org/10.1016/j.procbio.2018.07.001.

    Article  CAS  Google Scholar 

  16. Gao LM, Liu YQ, Sun H, Li C, Zhao ZP, Liu GY. Advances in mechanisms and modifications for rendering yeast thermotolerance. J Biosci Bioeng. 2016;121:599–606. https://doi.org/10.1016/j.jbiosc.2015.11.002.

    Article  CAS  PubMed  Google Scholar 

  17. Davidson JF, Whyte B, Bissinger PH, Schiestl RH. Oxidative stress is involved in heat-induced cell death in Saccharomyces cerevisiae. Proc Natl Acad Sci USA. 1996;93:5116–21. https://doi.org/10.1073/pnas.93.10.5116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Farrugia G, Balzan R. Oxidative stress and programmed cell death in yeast. Front Oncol. 2012;2:64. https://doi.org/10.3389/fonc.2012.00064.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Dakal TC, Solieri L, Giudici P. Adaptive response and tolerance to sugar and salt stress in the food yeast Zygosaccharomyces rouxii. Int J Food Microbiol. 2014;185:140–57. https://doi.org/10.1016/j.ijfoodmicro.2014.05.015.

    Article  CAS  PubMed  Google Scholar 

  20. Palma M, Guerreiro JF, Sa-Correia I. Adaptive response and tolerance to acetic acid in Saccharomyces cerevisiae and Zygosaccharomyces bailii: A physiological genomics perspective. Front Microbiol. 2018;9:16. https://doi.org/10.3389/fmicb.2018.00274.

    Article  Google Scholar 

  21. Henderson CM, Block DE. Examining the role of membrane lipid composition in determining the ethanol tolerance of Saccharomyces cerevisiae. Appl Environ Microbiol. 2014;80:2966–72. https://doi.org/10.1128/aem.04151-13.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Snoek T, Verstrepen KJ, Voordeckers K. How do yeast cells become tolerant to high ethanol concentrations? Curr Genet. 2016;62:475–80. https://doi.org/10.1007/s00294-015-0561-3.

    Article  CAS  PubMed  Google Scholar 

  23. Ma MG, Liu ZL. Mechanisms of ethanol tolerance in Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2010;87:829–45. https://doi.org/10.1007/s00253-010-2594-3.

    Article  CAS  PubMed  Google Scholar 

  24. Liu ZL. Understanding the tolerance of the industrial yeast Saccharomyces cerevisiae against a major class of toxic aldehyde compounds. Appl Microbiol Biotechnol. 2018;102:5369–90. https://doi.org/10.1007/s00253-018-8993-6.

    Article  CAS  PubMed  Google Scholar 

  25. Kuroda K, Ueda M. Engineering of global regulators and cell surface properties toward enhancing stress tolerance in Saccharomyces cerevisiae. J Biosci Bioeng. 2017;124:599–605. https://doi.org/10.1016/j.jbiosc.2017.06.010.

    Article  CAS  PubMed  Google Scholar 

  26. Li PS, Fu XF, Zhang L, Zhang ZY, Li JH, Li SZ. The transcription factors Hsf1 and Msn2 of thermotolerant Kluyveromyces marxianus promote cell growth and ethanol fermentation of Saccharomyces cerevisiae at high temperatures. Biotechnol Biofuels. 2017;10:13. https://doi.org/10.1186/s13068-017-0984-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yi DG, Kim MJ, Choi JE, Lee J, Jung J, Huh WK, Chung WH. Yap1 and Skn7 genetically interact with Rad51 in response to oxidative stress and DNA double-strand break in Saccharomyces cerevisiae. Free Radic Biol Med. 2016;101:424–33. https://doi.org/10.1016/j.freeradbiomed.2016.11.005.

    Article  CAS  PubMed  Google Scholar 

  28. Hirasawa T, Yoshikawa K, Nakakura Y, Nagahisa K, Furusawa C, Katakura Y, Shimizu H, Shioya S. Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis. J Biotechnol. 2007;131:34–44. https://doi.org/10.1016/j.jbiotec.2007.05.010.

    Article  CAS  PubMed  Google Scholar 

  29. Fletcher E, Feizi A, Kim S, Siewers V, Nielsen J. RNA-seq analysis of Pichia anomala reveals important mechanisms required for survival at low pH. Microb Cell Fact. 2015;14:11. https://doi.org/10.1186/s12934-015-0331-4.

    Article  CAS  Google Scholar 

  30. Muthukumar K, Nachiappan V. Phosphatidylethanolamine from phosphatidylserine decarboxylase2 is essential for autophagy under cadmium stress in Saccharomyces cerevisiae. Cell Biochem Biophys. 2013;67:1353–63. https://doi.org/10.1007/s12013-013-9667-8.

    Article  CAS  PubMed  Google Scholar 

  31. Lee WS, Yoo WH, Chae HJ. ER Stress and autophagy. Curr Mol Med. 2015;15:735–45. https://doi.org/10.2174/1566524015666150921105453.

    Article  CAS  PubMed  Google Scholar 

  32. Ruggiano A, Foresti O, Carvalho P. ER-associated degradation: protein quality control and beyond. J Cell Biol. 2014;204:868–78. https://doi.org/10.1083/jcb.201312042.

    Article  CAS  Google Scholar 

  33. Hipp MS, Park SH, Hartl FU. Proteostasis impairment in protein-misfolding and -aggregation diseases. Trends Cell Biol. 2014;24:506–14. https://doi.org/10.1016/j.tcb.2014.05.003.

    Article  CAS  PubMed  Google Scholar 

  34. Saibil H. Chaperone machines for protein folding, unfolding and disaggregation. Nat Rev Mol Cell Biol. 2013;14:630–42. https://doi.org/10.1038/nrm3658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mogk A, Ruger-Herreros C, Bukau B. Cellular functions and mechanisms of action of small heat shock proteins. Ann Rev Microbiol. 2019;73:89–110.

    Article  CAS  Google Scholar 

  36. Friant S, Meier KD, Riezman H. Increased ubiquitin-dependent degradation can replace the essential requirement for heat shock protein induction. EMBO J. 2003;22:3783–91. https://doi.org/10.1093/emboj/cdg375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Forrester SJ, Kikuchi DS, Hernandes MS, Xu Q, Griendling KK. Reactive oxygen species in metabolic and inflammatory signaling. Circ Res. 2018;122:877.

    Article  CAS  Google Scholar 

  38. Morano KA, Grant CM, Moye-Rowley WS. The response to heat shock and oxidative stress in Saccharomyces cerevisiae. Genetics. 2012;190:1157–95. https://doi.org/10.1534/genetics.111.128033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lin N-X, He R-Z, Xu Y, Yu X-W. Augmented peroxisomal ROS buffering capacity renders oxidative and thermal stress cross-tolerance in yeast. Microb Cell Fact. 2021;20:131. https://doi.org/10.1186/s12934-021-01623-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen RE, Thorner J. Function and regulation in MAPK signaling pathways: lessons learned from the yeast Saccharomyces cerevisiae. BBA-Mol Cell Res. 2007;1773:1311–40. https://doi.org/10.1016/j.bbamcr.2007.05.003.

    Article  CAS  Google Scholar 

  41. Granek JA, Magwene PM. Environmental and genetic determinants of colony morphology in yeast. PLoS Genet. 2010;6:12. https://doi.org/10.1371/journal.pgen.1000823.

    Article  CAS  Google Scholar 

  42. Auesukaree C. Molecular mechanisms of the yeast adaptive response and tolerance to stresses encountered during ethanol fermentation. J Biosci Bioeng. 2017;124:133–42. https://doi.org/10.1016/j.jbiosc.2017.03.009.

    Article  CAS  PubMed  Google Scholar 

  43. Tong S-M, Feng M-G. Insights into regulatory roles of MAPK-cascaded pathways in multiple stress responses and life cycles of insect and nematode mycopathogens. Appl Microbiol Biotechnol. 2018. https://doi.org/10.1007/s00253-018-9516-1.

    Article  PubMed  Google Scholar 

  44. Tong S-M, Feng M-G. Insights into regulatory roles of MAPK-cascaded pathways in multiple stress responses and life cycles of insect and nematode mycopathogens. Appl Microbiol Biotechnol. 2018;103:577–87. https://doi.org/10.1007/s00253-018-9516-1.

    Article  CAS  PubMed  Google Scholar 

  45. Saito H, Posas F. Response to hyperosmotic stress. Genetics. 2012;192:289–318. https://doi.org/10.1534/genetics.112.140863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Satomura A, Miura N, Kuroda K, Ueda M. Reconstruction of thermotolerant yeast by one-point mutation identified through whole-genome analyses of adaptively-evolved strains. Sci Rep. 2016;6:9. https://doi.org/10.1038/srep23157.

    Article  CAS  Google Scholar 

  47. Garcia R, Bravo E, Diez-Muniz S, Nombela C, Rodriguez-Pena JM, Arroyo J. A novel connection between the Cell Wall Integrity and the PKA pathways regulates cell wall stress response in yeast. Sci Rep. 2017;7:15. https://doi.org/10.1038/s41598-017-06001-9.

    Article  CAS  Google Scholar 

  48. Charizanis C, Juhnke H, Krems B, Entian KD. The oxidative stress response mediated via Pos9/Skn7 is negatively regulated by the Ras PKA pathway in Saccharomyces cerevisiae. Mol Gen Genet. 1999;261:740–52. https://doi.org/10.1007/s004380050017.

    Article  CAS  PubMed  Google Scholar 

  49. Lee ME, Singh K, Snider J, Shenoy A, Paumi CM, Stagljar I, Park H-O. The Rho1 GTPase acts together with a vacuolar glutathione S-Conjugate transporter to protect yeast cells from oxidative stress. Genetics. 2011;188:859-U187. https://doi.org/10.1534/genetics.111.130724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Levin DE. Regulation of cell wall biogenesis in Saccharomyces cerevisiae: the cell wall integrity signaling pathway. Genetics. 2011;189:1145–75. https://doi.org/10.1534/genetics.111.128264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Udom N, Chansongkrow P, Charoensawan V, Auesukaree C. Coordination of the cell wall integrity and high-osmolarity glycerol pathways in response to ethanol stress in Saccharomyces cerevisiae. Appl Environ Microbiol. 2019;85:16. https://doi.org/10.1128/aem.00551-19.

    Article  CAS  Google Scholar 

  52. Charoenbhakdi S, Dokpikul T, Burphan T, Techo T, Auesukaree C. Vacuolar H+- ATPase protects Saccharomyces cerevisiae Cells against ethanol-induced oxidative and cell wall stresses. Appl Environ Microbiol. 2016;82:3121–30. https://doi.org/10.1128/aem.00376-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Valdivia RH, Schekman R. The yeasts Rho1p and Pkc1p regulate the transport of chitin synthase III (Chs3p) from internal stores to the plasma membrane. Proc Natl Acad Sci USA. 2003;100:10287–92. https://doi.org/10.1073/pnas.1834246100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Guaragnella N, Stirpe M, Marzulli D, Mazzoni C, Giannattasio S. Acid stress triggers resistance to acetic acid-induced regulated cell death through Hog1 activation which requires RTG2 in yeast. Oxid Med Cell Longev. 2019. https://doi.org/10.1155/2019/4651062.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Huang S, Zhang D, Weng FL, Wang YQ. Activation of a mitogen-activated protein kinase Hog1 by DNA damaging agent methyl methanesulfonate in yeast. Front Mol Biosci. 2020;7:10. https://doi.org/10.3389/fmolb.2020.581095.

    Article  CAS  Google Scholar 

  56. Thevelein JM, de Winde JH. Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol. 1999;33:904–18. https://doi.org/10.1046/j.1365-2958.1999.01538.x.

    Article  CAS  PubMed  Google Scholar 

  57. Kritsiligkou P, Nowicki-Osuch K, Carter Z, Kershaw CJ, Creamer DR, Weids AJ, Grant CM. Tolerance to nascent protein misfolding stress requires fine-tuning of the cAMP/PKA pathway. J Biol Chem. 2021;296: 100690. https://doi.org/10.1016/j.jbc.2021.100690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zyrina AN, Smirnova EA, Markova OV, Severin FF, Knorre DA. Mitochondrial superoxide dismutase and Yap1p act as a signaling module contributing to ethanol tolerance of the yeast Saccharomyces cerevisiae. Appl Environ Microbiol. 2017;83:13. https://doi.org/10.1128/aem.02759-16.

    Article  CAS  Google Scholar 

  59. Tanaka K, Tatebayashi K, Nishimura A, Yamamoto K, Yang HY, Saito H. Yeast osmosensors Hkr1 and Msb2 activate the Hog1 MAPK cascade by different mechanisms. Sci Signal. 2014;7:10. https://doi.org/10.1126/scisignal.2004780.

    Article  CAS  Google Scholar 

  60. Rep M, Krantz M, Thevelein JM, Hohmann S. The transcriptional response of Saccharomyces cerevisiae to osmotic shock - Hot1p and Msn2p/Msn4p are required for the induction of subsets of high osmolarity glycerol pathway-dependent genes. J Biol Chem. 2000;275:8290–300. https://doi.org/10.1074/jbc.275.12.8290.

    Article  CAS  PubMed  Google Scholar 

  61. Kaino T, Takagi H. Gene expression profiles and intracellular contents of stress protectants in Saccharomyces cerevisiae under ethanol and sorbitol stresses. Appl Microbiol Biotechnol. 2008;79:273–83. https://doi.org/10.1007/s00253-008-1431-4.

    Article  CAS  PubMed  Google Scholar 

  62. Ji H, Zhuge B, Zong H, Lu XY, Fang HY, Zhuge J. Role of CgHOG1 in stress responses and glycerol overproduction of Candida glycerinogenes. Curr Microbiol. 2016;73:827–33. https://doi.org/10.1007/s00284-016-1132-7.

    Article  CAS  PubMed  Google Scholar 

  63. Auesukaree C, Damnernsawad A, Kruatrachue M, Pokethitiyook P, Boonchird C, Kaneko Y, Harashima S. Genome-wide identification of genes involved in tolerance to various environmental stresses in Saccharomyces cerevisiae. J Appl Genet. 2009;50:301–10. https://doi.org/10.1007/bf03195688.

    Article  CAS  PubMed  Google Scholar 

  64. Vazquez-Ibarra A, Subirana L, Ongay-Larios L, Kawasaki L, Rojas-Ortega E, Rodriguez-Gonzalez M, de Nadal E, Posas F, Coria R. Activation of the Hog1 MAPK by the Ssk2/Ssk22 MAP3Ks, in the absence of the osmosensors, is not sufficient to trigger osmostress adaptation in Saccharomyces cerevisiae. FEBS J. 2018;285:1079–96. https://doi.org/10.1111/febs.14385.

    Article  CAS  PubMed  Google Scholar 

  65. Herivaux A, Lavin JL, de Bernonville TD, Vandeputte P, Bouchara JP, Gastebois A, Oguiza JA, Papon N. Progressive loss of hybrid histidine kinase genes during the evolution of budding yeasts (Saccharomycotina). Curr Genet. 2018;64:841–51. https://doi.org/10.1007/s00294-017-0797-1.

    Article  CAS  PubMed  Google Scholar 

  66. Yamamoto K, Tatebayashi K, Tanaka K, Saito H. Dynamic control of yeast MAP kinase network by induced association and dissociation between the Ste50 Scaffold and the Opy2 membrane anchor. Mol Cell. 2010;40:87–98. https://doi.org/10.1016/j.molcel.2010.09.011.

    Article  CAS  PubMed  Google Scholar 

  67. Montanes FM, Pascual-Ahuir A, Proft M. Repression of ergosterol biosynthesis is essential for stress resistance and is mediated by the Hog1 MAP kinase and the Mot3 and Rox1 transcription factors. Mol Microbiol. 2011;79:1008–23. https://doi.org/10.1111/j.1365-2958.2010.07502.x.

    Article  CAS  PubMed  Google Scholar 

  68. Caspeta L, Chen Y, Ghiaci P, Feizi A, Buskov S, Hallstrom BM, Petranovic D, Nielsen J. Altered sterol composition renders yeast thermotolerant. Science. 2014;346:75–8. https://doi.org/10.1126/science.1258137.

    Article  CAS  PubMed  Google Scholar 

  69. Lu JMY, Deschenes RJ, Fassler JS. Saccharomyces cerevisiae histidine phosphotransferase Ypd1p shuttles between the nucleus and cytoplasm for SLN1-dependent phosphorylation of Ssk1p and Skn7p. Eukaryot Cell. 2003;2:1304–14. https://doi.org/10.1128/ec.2.6.1304-1314.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dexter JP, Xu P, Gunawardena J, McClean MN. Robust network structure of the Sln1-Ypd1-Ssk1 three-component phospho-relay prevents unintended activation of the HOG MAPK pathway in Saccharomyces cerevisiae. BMC Syst Biol. 2015;9:15. https://doi.org/10.1186/s12918-015-0158-y.

    Article  CAS  Google Scholar 

  71. Sanz AB, Garcia R, Rodriguez-Pena JM, Arroyo J. The CWI pathway: regulation of the transcriptional adaptive response to cell wall stress in yeast. J Fungi. 2018;4:12. https://doi.org/10.3390/jof4010001.

    Article  CAS  Google Scholar 

  72. Schiavone M, Vax A, Formosa C, Martin-Yken H, Dague E, Francois JM. A combined chemical and enzymatic method to determine quantitatively the polysaccharide components in the cell wall of yeasts. FEMS Yeast Res. 2014;14:933–47. https://doi.org/10.1111/1567-1364.12182.

    Article  CAS  PubMed  Google Scholar 

  73. Guan B, Lei JY, Su S, Chen FX, Duan ZY, Chen Y, Gong XH, Li HZ, Jin J. Absence of Yps7p, a putative glycosylphosphatidylinositol-linked aspartyl protease in Pichia pastoris, results in aberrant cell wall composition and increased osmotic stress resistance. FEMS Yeast Res. 2012;12:969–79. https://doi.org/10.1111/1567-1364.12002.

    Article  CAS  PubMed  Google Scholar 

  74. Li XE, Wang JJ, Phornsanthia S, Yin XS, Li Q. Strengthening of cell wall structure enhances stress resistance and fermentation performance in lager yeast. J Am Soc Brew Chem. 2014;72:88–94. https://doi.org/10.1094/asbcj-2014-0320-01.

    Article  CAS  Google Scholar 

  75. Lin NX, He RZ, Xu Y, Yu XW. Augmented peroxisomal ROS buffering capacity renders oxidative and thermal stress cross-tolerance in yeast. Microb Cell Fact. 2021;20:14. https://doi.org/10.1186/s12934-021-01623-1.

    Article  CAS  Google Scholar 

  76. Garcia R, Botet J, Rodriguez-Pena JM, Bermejo C, Ribas JC, Revuelta JL, Nombela C, Arroyo J. Genomic profiling of fungal cell wall-interfering compounds: identification of a common gene signature. BMC Genomics. 2015;16:20. https://doi.org/10.1186/s12864-015-1879-4.

    Article  CAS  Google Scholar 

  77. Benjaphokee S, Koedrith P, Auesukaree C, Asvarak T, Sugiyama M, Kaneko Y, Boonchird C, Harashima S. CDC19 encoding pyruvate kinase is important for high-temperature tolerance in Saccharomyces cerevisiae. N Biotechnol. 2012;29:166–76. https://doi.org/10.1016/j.nbt.2011.03.007.

    Article  CAS  PubMed  Google Scholar 

  78. Halim A, Larsen ISB, Neubert P, Joshi HJ, Petersen BL, Vakhrushev SY, Strahl S, Clausen H. Discovery of a nucleocytoplasmic O-mannose glycoproteome in yeast. Proc Natl Acad Sci USA. 2015;112:15648–53. https://doi.org/10.1073/pnas.1511743112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Arroyo J, Hutzler J, Bermejo C, Ragni E, Garcia-Cantalejo J, Botias P, Piberger H, Schott A, Sanz AB, Strahl S. Functional and genomic analyses of blocked protein O-mannosylation in baker’s yeast. Mol Microbiol. 2011;79:1529–46. https://doi.org/10.1111/j.1365-2958.2011.07537.x.

    Article  CAS  PubMed  Google Scholar 

  80. Kamada Y, Jung US, Piotrowski R, Levin DE. The protein-kinase C-activated MAP kinase pathway of saccharomyces-cerevisiae mediates a novel aspect of the heat-shock response. Genes Dev. 1995;9:1559–71. https://doi.org/10.1101/gad.9.13.1559.

    Article  CAS  PubMed  Google Scholar 

  81. Jonasson EM, Rossio V, Hatakeyama R, Abe M, Ohya Y, Yoshida S. Zds1/Zds2-PP2A(Cdc55) complex specifies signaling output from Rho1 GTPase. J Cell Biol. 2016;212:51–61. https://doi.org/10.1083/jcb.201508119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Fischer S, Rijal R, Frommolt P, Wagle P, Konertz R, Faix J, MeSsling S, Eichinger L. Functional characterization of ubiquitin-like core autophagy protein ATG12 in Dictyostelium discoideum. Cells. 2019. https://doi.org/10.3390/cells8010072.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Meena RC, Thakur S, Nath S, Chakrabarti A. Tolerance to thermal and reductive stress in Saccharomyces cerevisiae is amenable to regulation by phosphorylation-dephosphorylation of ubiquitin conjugating enzyme 1 (Ubc1) S97 and S115. Yeast. 2011;28:783–93. https://doi.org/10.1002/yea.1904.

    Article  CAS  PubMed  Google Scholar 

  84. Fischer S, Rijal R, Frommolt P, Wagle P, Konertz R, Faix J, Wissling S, Eichinger L. Functional characterization of ubiquitin-like core autophagy protein ATG12 in Dictyostelium discoideum. Cells. 2019;8:27. https://doi.org/10.3390/cells8010072.

    Article  CAS  Google Scholar 

  85. Garcia R, Sanz AB, Rodriguez-Pena JM, Nombela C, Arroyo J. Rlm1 mediates positive autoregulatory transcriptional feedback that is essential for Slt2-dependent gene expression. J Cell Sci. 2016;129:1649–60. https://doi.org/10.1242/jcs.180190.

    Article  CAS  PubMed  Google Scholar 

  86. Roberts CJ, Nelson B, Marton MJ, Stoughton R, Meyer MR, Bennett HA, He YDD, Dai HY, Walker WL, Hughes TR, et al. Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles. Science. 2000;287:873–80. https://doi.org/10.1126/science.287.5454.873.

    Article  CAS  PubMed  Google Scholar 

  87. Jung US, Levin DE. Genome-wide analysis of gene expression regulated by the yeast cell wall integrity signalling pathway. Mol Microbiol. 1999;34:1049–57. https://doi.org/10.1046/j.1365-2958.1999.01667.x.

    Article  CAS  PubMed  Google Scholar 

  88. Pescini D, Cazzaniga P, Besozzi D, Mauri G, Amigoni L, Colombo S, Martegani E. Simulation of the Ras/cAMP/PKA pathway in budding yeast highlights the establishment of stable oscillatory states. Biotechnol Adv. 2012;30:99–107. https://doi.org/10.1016/j.biotechadv.2011.06.014.

    Article  CAS  PubMed  Google Scholar 

  89. Li S, Giardina DM, Siegal ML. Control of nongenetic heterogeneity in growth rate and stress tolerance of Saccharomyces cerevisiae by cyclic AMP-regulated transcription factors. PLoS Genet. 2018;14:42. https://doi.org/10.1371/journal.pgen.1007744.

    Article  CAS  Google Scholar 

  90. Welch AZ, Gibney PA, Botstein D, Koshland DE. TOR and RAS pathways regulate desiccation tolerance in Saccharomyces cerevisiae. Mol Biol Cell. 2013;24:115–28. https://doi.org/10.1091/mbc.E12-07-0524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Huang CJ, Lu MY, Chang YW, Li WH. Experimental evolution of yeast for high-temperature tolerance. Mol Biol Evol. 2018;35:1823–39. https://doi.org/10.1093/molbev/msy077.

    Article  CAS  PubMed  Google Scholar 

  92. Nicastro R, Tripodi F, Gaggini M, Castoldi A, Reghellin V, Nonnis S, Tedeschi G, Coccetti P. Snf1 phosphorylates adenylate cyclase and negatively regulates protein kinase A-dependent transcription in Saccharomyces cerevisiae. J Biol Chem. 2015;290:24715–26. https://doi.org/10.1074/jbc.M115.658005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bodvard K, Peeters K, Roger F, Romanov N, Igbaria A, Welkenhuysen N, Palais G, Reiter W, Toledano MB, Kall M, Molin M. Light-sensing via hydrogen peroxide and a peroxiredoxin. Nat Commun. 2017;8:11. https://doi.org/10.1038/ncomms14791.

    Article  CAS  Google Scholar 

  94. Matsuo Y, Kawamukai M. cAMP-dependent protein kinase involves calcium tolerance through the regulation of Prz1 in Schizosaccharomyces pombe. Biosci Biotechnol Biochem. 2017;81:231–41. https://doi.org/10.1080/09168451.2016.1246171.

    Article  CAS  PubMed  Google Scholar 

  95. Roger F, Picazo C, Reiter W, Libiad M, Asami C, Hanzen S, Gao CX, Lagniel G, Welkenhuysen N, Labarre J, et al. Peroxiredoxin promotes longevity and H2O2-resistance in yeast through redox-modulation of protein kinase A. Elife. 2020;9:32. https://doi.org/10.7554/eLife.60346.

    Article  Google Scholar 

  96. Kritsiligkou P, Rand JD, Weids AJ, Wang XM, Kershaw CJ, Grant CM. Endoplasmic reticulum (ER) stress-induced reactive oxygen species (ROS) are detrimental for the fitness of a thioredoxin reductase mutant. J Biol Chem. 2018;293:11984–95. https://doi.org/10.1074/jbc.RA118.001824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Drobna E, Gazdag Z, Culakova H, Dzugasova V, Gbelska Y, Pesti M, Subik J. Overexpression of the YAP1, PDE2, and STB3 genes enhances the tolerance of yeast to oxidative stress induced by 7-chlorotetrazolo 5,1-c benzo 1,2,4 triazine. FEMS Yeast Res. 2012;12:958–68. https://doi.org/10.1111/j.1567-1364.2012.00845.x.

    Article  CAS  PubMed  Google Scholar 

  98. Alriksson B, Horvath IS, Jonsson LJ. Overexpression of Saccharomyces cerevisiae transcription factor and multidrug resistance genes conveys enhanced resistance to lignocellulose-derived fermentation inhibitors. Process Biochem. 2010;45:264–71. https://doi.org/10.1016/j.procbio.2009.09.016.

    Article  CAS  Google Scholar 

  99. Rowe LA, Degtyareva N, Doetsch PW. Yap1: A DNA damage responder in Saccharomyces cerevisiae. Mech Ageing Dev. 2012;133:147–56. https://doi.org/10.1016/j.mad.2012.03.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ma M, Liu ZL. Comparative transcriptome profiling analyses during the lag phase uncover YAP1, PDR1, PDR3, RPN4, and HSF1 as key regulatory genes in genomic adaptation to the lignocellulose derived inhibitor HMF for Saccharomyces cerevisiae. BMC Genomics. 2010;11(1):660.

    Article  CAS  Google Scholar 

  101. Hussain M, Hamid MI, Wang NN, Bin L, Xiang MC, Liu XZ. The transcription factor SKN7 regulates conidiation, thermotolerance, apoptotic-like cell death and parasitism in the nematode endoparasitic fungus Hirsutella minnesotensis. Sci Rep. 2016;6:12. https://doi.org/10.1038/srep30047.

    Article  CAS  Google Scholar 

  102. Ketela T, Brown JL, Stewart RC, Bussey H. Yeast Skn7p activity is modulated by the Sln1p-Ypd1p osmosensor and contributes to regulation of the HOG pathway. Mol Gen Genet. 1998;259:372–8. https://doi.org/10.1007/s004380050824.

    Article  CAS  PubMed  Google Scholar 

  103. Rattanawong K, Kerdsomboon K, Auesukaree C. Cu/Zn-superoxide dismutase and glutathione are involved in response to oxidative stress induced by protein denaturing effect of alachlor in Saccharomyces cerevisiae. Free Radic Biol Med. 2015;89:963–71. https://doi.org/10.1016/j.freeradbiomed.2015.10.421.

    Article  CAS  PubMed  Google Scholar 

  104. Orumets K, Kevvai K, Nisamedtinov I, Tamm T, Paalme T. YAP1 over-expression in Saccharomyces cerevisiae enhances glutathione accumulation at its biosynthesis and substrate availability levels. Biotechnol J. 2012;7:566–8. https://doi.org/10.1002/biot.201100363.

    Article  CAS  PubMed  Google Scholar 

  105. West JD, Roston TJ, David JB, Allan KM, Loberg MA. Piecing together how peroxiredoxins maintain genomic stability. Antioxidants. 2018;7:16. https://doi.org/10.3390/antiox7120177.

    Article  CAS  Google Scholar 

  106. Tachibana T, Okazaki S, Murayama A, Naganuma A, Nomoto A, Kuge S. A major peroxiredoxin-induced activation of Yap1 transcription factor is mediated by reduction-sensitive disulfide bonds and reveals a low level of transcriptional activation. J Biol Chem. 2009;284:4464–72. https://doi.org/10.1074/jbc.M807583200.

    Article  CAS  PubMed  Google Scholar 

  107. Lin NX, He RZ, Xu Y, Yu XW. Oxidative stress tolerance contributes to heterologous protein production in Pichia pastoris. Biotechnol Biofuels. 2021;14:13. https://doi.org/10.1186/s13068-021-02013-w.

    Article  CAS  Google Scholar 

  108. Lushchak OV, Inoue Y, Lushchak VI. Regulatory protein Yap1 is involved in response of yeast Saccharomyces cerevisiae to nitrosative stress. Biochemistry-Moscow. 2010;75:629–35. https://doi.org/10.1134/s0006297910050135.

    Article  CAS  PubMed  Google Scholar 

  109. Yang YJ, Xia YJ, Hu WY, Tao LR, Ni L, Yu JS, Ai LZ. Membrane fluidity of Saccharomyces cerevisiae from Huangjiu (Chinese Rice Wine) is variably regulated by OLE1 to offset the disruptive effect of ethanol. Appl Environ Microbiol. 2019;85:14. https://doi.org/10.1128/aem.01620-19.

    Article  CAS  Google Scholar 

  110. Wang X, Bai X, Chen DF, Chen FZ, Li BZ, Yuan YJ. Increasing proline and myo-inositol improves tolerance of Saccharomyces cerevisiae to the mixture of multiple lignocellulose-derived inhibitors. Biotechnol Biofuels. 2015;8:13. https://doi.org/10.1186/s13068-015-0329-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Tapia H, Young L, Fox D, Bertozzi CR, Koshland D. Increasing intracellular trehalose is sufficient to confer desiccation tolerance to Saccharomyces cerevisiae. Proc Natl Acad Sci USA. 2015;112:6122–7. https://doi.org/10.1073/pnas.1506415112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Sun X, Zhang J, Fan ZH, Xiao P, Liu SN, Li RP, Zhu WB, Huang L. MAL62 overexpression enhances freezing tolerance of Baker’s yeast in lean dough by enhancing Tps1 activity and maltose metabolism. J Agric Food Chem. 2019;67:8986–93. https://doi.org/10.1021/acs.jafc.9b03790.

    Article  CAS  PubMed  Google Scholar 

  113. Kitichantaropas Y, Boonchird C, Sugiyama M, Kaneko Y, Harashima S, Auesukaree C. Cellular mechanisms contributing to multiple stress tolerance in Saccharomyces cerevisiae strains with potential use in high-temperature ethanol fermentation. AMB Express. 2016;6:14. https://doi.org/10.1186/s13568-016-0285-x.

    Article  CAS  Google Scholar 

  114. Hohenschuh W, Hector RE, Mertens JA, Murthy GS. Development and characterization of Saccharomyces cerevisiae strains genetically modified to over-express the pentose phosphate pathway regulating transcription factor STB5 in the presence of xylose. SystMicrobiol Biomanufact. 2021;1:42–57. https://doi.org/10.1007/s43393-020-00002-y.

    Article  Google Scholar 

  115. Satomura A, Katsuyama Y, Miura N, Kuroda K, Tomio A, Bamba T, Fukusaki E, Ueda M. Acquisition of thermotolerant yeast Saccharomyces cerevisiae by breeding via stepwise adaptation. Biotechnol Prog. 2013;29:1116–23. https://doi.org/10.1002/btpr.1754.

    Article  CAS  PubMed  Google Scholar 

  116. Ma KD, He MX, You HY, Pan LW, Hu GQ, Cui YB, Maeda T. Enhanced fuel ethanol production from rice straw hydrolysate by an inhibitor-tolerant mutant strain of Scheffersomyces stipitis. RSC Adv. 2017;7:31180–8. https://doi.org/10.1039/c7ra04049k.

    Article  CAS  Google Scholar 

  117. Mitsui R, Yamada R, Ogino H. Improved stress tolerance of Saccharomyces cerevisiae by CRISPR-Cas-mediated genome evolution. Appl Biochem Biotechnol. 2019;189:810–21. https://doi.org/10.1007/s12010-019-03040-y.

    Article  CAS  PubMed  Google Scholar 

  118. Turanli-Yildiz B, Benbadis L, Alkim C, Sezgin T, Aksit A, Gokce A, Ozturk Y, Baykal AT, Cakar ZP, Francois JM. In vivo evolutionary engineering for ethanol-tolerance of Saccharomyces cerevisiae haploid cells triggers diploidization. J Biosci Bioeng. 2017;124:309–18. https://doi.org/10.1016/j.jbiosc.2017.04.012.

    Article  CAS  PubMed  Google Scholar 

  119. Kim SK, Jin YS, Choi IG, Park YC, Seo JH. Enhanced tolerance of Saccharomyces cerevisiae to multiple lignocellulose-derived inhibitors through modulation of spermidine contents. Metab Eng. 2015;29:46–55. https://doi.org/10.1016/j.ymben.2015.02.004.

    Article  CAS  PubMed  Google Scholar 

  120. Gonzalez-Ramos D, de Vries ARG, Grijseels SS, van Berkum MC, Swinnen S, van den Broek M, Nevoigt E, Daran JMG, Pronk JT, van Maris AJA. A new laboratory evolution approach to select for constitutive acetic acid tolerance in Saccharomyces cerevisiae and identification of causal mutations. Biotechnol Biofuels. 2016;9:18. https://doi.org/10.1186/s13068-016-0583-1.

    Article  CAS  Google Scholar 

  121. Berterame NM, Porro D, Ami D, Branduardi P. Protein aggregation and membrane lipid modifications under lactic acid stress in wild type and OPI1 deleted Saccharomyces cerevisiae strains. Microb Cell Fact. 2016;15:12. https://doi.org/10.1186/s12934-016-0438-2.

    Article  CAS  Google Scholar 

  122. Xu X, Williams TC, Divne C, Pretorius IS, Paulsen IT. Evolutionary engineering in Saccharomyces cerevisiae reveals a TRK1-dependent potassium influx mechanism for propionic acid tolerance. Biotechnol Biofuels. 2019;12:14. https://doi.org/10.1186/s13068-019-1427-6.

    Article  Google Scholar 

  123. Oh EJ, Wei N, Kwak S, Kim H, Jin YS. Overexpression of RCK1 improves acetic acid tolerance in Saccharomyces cerevisiae. J Biotechnol. 2019;292:1–4. https://doi.org/10.1016/j.jbiotec.2018.12.013.

    Article  CAS  PubMed  Google Scholar 

  124. Zhao H, Li J, Han B, Li X, Chen J. Improvement of oxidative stress tolerance in Saccharomyces cerevisiae through global transcription machinery engineering. J Ind Microbiol Biotechnol. 2014;41:869–78. https://doi.org/10.1007/s10295-014-1421-8.

    Article  CAS  PubMed  Google Scholar 

  125. Xu P, Qiao KJ, Stephanopoulos G. Engineering oxidative stress defense pathways to build a robust lipid production platform in Yarrowia lipolytica. Biotechnol Bioeng. 2017;114:1521–30. https://doi.org/10.1002/bit.26285.

    Article  CAS  PubMed  Google Scholar 

  126. Ekberg J, Rautio J, Mattinen L, Vidgren V, Londesborough J, Gibson BR. Adaptive evolution of the lager brewing yeast Saccharomyces pastorianus for improved growth under hyperosmotic conditions and its influence on fermentation performance. FEMS Yeast Res. 2013;13:335–49. https://doi.org/10.1111/1567-1364.12038.

    Article  CAS  PubMed  Google Scholar 

  127. Ji H, Lu XY, Zong H, Zhuge B. gamma-aminobutyric acid accumulation enhances the cell growth of Candida glycerinogenes under hyperosmotic conditions. J Gen Appl Microbiol. 2018;64:84–9. https://doi.org/10.2323/jgam.2017.08.002.

    Article  CAS  PubMed  Google Scholar 

  128. Benjaphokee S, Hasegawa D, Yokota D, Asvarak T, Auesukaree C, Sugiyama M, Kaneko Y, Boonchird C, Harashima S. Highly efficient bioethanol production by a Saccharomyces cerevisiae strain with multiple stress tolerance to high temperature, acid and ethanol. New Biotechnol. 2012;29:379–86. https://doi.org/10.1016/j.nbt.2011.07.002.

    Article  CAS  Google Scholar 

  129. Sun H, Jia HY, Li J, Feng XD, Liu YQ, Zhou XH, Li C. Rational synthetic combination genetic devices boosting high temperature ethanol fermentation. Synth Syst Biotechnol. 2017;2:121–9. https://doi.org/10.1016/j.synbio.2017.04.003.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Jiang B, Argyros R, Bukowski J, Nelson S, Sharkey N, Kim S, Copeland V, Davidson RC, Chen R, Zhuang J, et al. Inactivation of a GAL4-Like transcription factor improves cell fitness and product yield in glycoengineered Pichia pastoris strains. Appl Environ Microbiol. 2015;81:260–71. https://doi.org/10.1128/aem.02619-14.

    Article  PubMed  Google Scholar 

  131. Xu K, Gao LM, Ul Hassan J, Zhao ZP, Li C, Huo YX, Liu GY. Improving the thermo-tolerance of yeast base on the antioxidant defense system. Chem Eng Sci. 2018;175:335–42. https://doi.org/10.1016/j.ces.2017.10.016.

    Article  CAS  Google Scholar 

  132. Wang PM, Zheng DQ, Liu TZ, Tao XL, Feng MG, Min H, Jiang XH, Wu XC. The combination of glycerol metabolic engineering and drug resistance marker-aided genome shuffling to improve very-high-gravity fermentation performances of industrial Saccharomyces cerevisiae. Bioresour Technol. 2012;108:203–10. https://doi.org/10.1016/j.biortech.2011.12.147.

    Article  CAS  PubMed  Google Scholar 

  133. Xu K, Qin L, Bai WX, Wang XY, Li F, Ren SC, Gao XP, Chen B, Tong Y, Li J, et al. Multilevel defense system (MDS) relieves multiple stresses for economically boosting ethanol production of industrial Saccharomyces cerevisiae. ACS Energy Lett. 2020;5:572–82. https://doi.org/10.1021/acsenergylett.9b02681.

    Article  CAS  Google Scholar 

  134. Krogerus K, Holmstrom S, Gibson B. Enhanced wort fermentation with de novo lager hybrids adapted to high-ethanol environments. Appl Environ Microbiol. 2018;84:20. https://doi.org/10.1128/aem.02302-17.

    Article  CAS  Google Scholar 

  135. Lian JZ, HamediRad M, Hu SM, Zhao HM. Combinatorial metabolic engineering using an orthogonal tri-functional CRISPR system. Nat Commun. 2017;8:9. https://doi.org/10.1038/s41467-017-01695-x.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key Research and Development Program of China [grant number 2021YFC2100203]; the National Natural Science Foundation of China [grant number 32072162]; the Postgraduate Research & Practice Innovation Program of Jiangsu Province [grant number KYCX18_1791], and the National First-Class Discipline Program of Light Industry Technology and Engineering [grant number LITE2018-09].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Wei Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, NX., Xu, Y. & Yu, XW. Overview of yeast environmental stress response pathways and the development of tolerant yeasts. Syst Microbiol and Biomanuf 2, 232–245 (2022). https://doi.org/10.1007/s43393-021-00058-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43393-021-00058-4

Keywords

Navigation