Skip to main content

Advertisement

Log in

Evaluation of intraoperative coronal alignment using a computer-assisted rod bending system (CARBS) without intraoperative radiation exposure in adult spinal deformity surgery: a technical note and preliminary results

  • Case Series
  • Published:
Spine Deformity Aims and scope Submit manuscript

Abstract

Purpose

Intraoperative radiographs and fluoroscopy are used in adult spinal deformity (ASD) surgery to prevent postoperative coronal malalignment but with limited accuracy. Therefore, we applied a computer-assisted rod bending system (CARBS: Bendini®) for an intraoperative coronal alignment evaluation. The purpose of this study is to introduce this novel technique and validate its accuracy.

Methods

Fifteen ASD patients were included in the study. The heads of the bilateral S1 pedicle screws (S1), the S1 spinous process, and the bilateral greater trochanter (GT) and the C7 spinous process were recorded with CARBS for an intraoperative coronal alignment evaluation. The lines which connect the bilateral S1 and GT were used as references. The C7-center sacral vertical line (C7-CSVL) on the CARBS monitor was checked, and the C7-CSVL from the intraoperative CARBS recording and postoperative standing whole spine radiograph were compared.

Results

Intraoperative C7-CSVL with CARBS was 35.1 ± 31.6 mm when the S1 pedicle screws were used as the reference line and was 16.6 ± 17.8 mm when the GTs were used. Postoperative C7-CSVL by radiograph was 15.1 ± 16.5 mm. In addition, the intraoperative C7-CSVL with CARBS and the postoperative C7-CSVL showed a strong positive correlation in both GT (R = 0.86, p < 0.01) and in S1(R = 0.79, p < 0.01), with a better correlation found in GT than in S1.

Conclusion

Intraoperative C7-CSVL with CARBS was found to be highly accurate in ASD surgery. Our results suggest that this novel technique can be useful as an alternative to intraoperative radiography and fluoroscopy and may reduce radiation exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Glassman SD, Bridwell K, Dimar JR et al (2005) The impact of positive sagittal balance in adult spinal deformity. Spine 30(18):2024–2029. https://doi.org/10.1097/01.brs.0000179086.30449.96. (PubMed PMID: 16166889)

    Article  PubMed  Google Scholar 

  2. Hosogane N, Watanabe K, Yagi M et al (2017) Scoliosis is a risk factor for gastroesophageal reflux disease in adult spinal deformity. Clin Spine Surg 30(4):E480–E484. https://doi.org/10.1097/bsd.0000000000000263. (PubMed PMID: 28437356)

    Article  PubMed  Google Scholar 

  3. Schwab FJ, Smith VA, Biserni M et al (2002) Adult scoliosis: a quantitative radiographic and clinical analysis. Spine 27(4):387–392. https://doi.org/10.1097/00007632-200202150-00012. (PubMed PMID: 11840105)

    Article  PubMed  Google Scholar 

  4. Legaye J, Duval-Beaupère G, Hecquet J et al (1998) Pelvic incidence: a fundamental pelvic parameter for three-dimensional regulation of spinal sagittal curves. Eur Spine J 7(2):99–103. https://doi.org/10.1007/s005860050038. (PubMedPMID: 9629932; PubMedCentralPMCID: PMCPMC3611230)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Boulay C, Tardieu C, Hecquet J et al (2006) Sagittal alignment of spine and pelvis regulated by pelvic incidence: standard values and prediction of lordosis. Eur Spine J 15(4):415–422. https://doi.org/10.1007/s00586-005-0984-5. (Epub 20050923 PubMed PMID: 16179995; PubMed Central PMCID: PMCPMC3489325)

    Article  CAS  PubMed  Google Scholar 

  6. Inami S, Moridaira H, Takeuchi D et al (2016) Optimum pelvic incidence minus lumbar lordosis value can be determined by individual pelvic incidence. Eur Spine J 25(11):3638–3643. https://doi.org/10.1007/s00586-016-4563-8. (Epub 20160412 PubMed PMID: 27072550)

    Article  PubMed  Google Scholar 

  7. Hasegawa K, Okamoto M, Hatsushikano S et al (2016) Normative values of spino-pelvic sagittal alignment, balance, age, and health-related quality of life in a cohort of healthy adult subjects. Eur Spine J 25(11):3675–3686. https://doi.org/10.1007/s00586-016-4702-2. (Epub 20160718 PubMed PMID: 27432430)

    Article  PubMed  Google Scholar 

  8. Yamato Y, Hasegawa T, Kobayashi S et al (2016) Calculation of the target lumbar lordosis angle for restoring an optimal pelvic tilt in elderly patients with adult spinal deformity. Spine 41(4):E211–E217. https://doi.org/10.1097/brs.0000000000001209. (PubMed PMID: 26571165)

    Article  PubMed  Google Scholar 

  9. Schwab FJ, Blondel B, Bess S et al (2013) Radiographical spinopelvic parameters and disability in the setting of adult spinal deformity: a prospective multicenter analysis. Spine 38(13):E803–E812. https://doi.org/10.1097/BRS.0b013e318292b7b9. (PubMed PMID: 23722572)

    Article  PubMed  Google Scholar 

  10. Daubs MD, Lenke LG, Bridwell KH et al (2013) Does correction of preoperative coronal imbalance make a difference in outcomes of adult patients with deformity? Spine 38(6):476–483. https://doi.org/10.1097/BRS.0b013e3182846eb3. (PubMed PMID: 23492973)

    Article  PubMed  Google Scholar 

  11. Takami M, Taiji R, Tsutsui S et al (2022) Impact of an intraoperative coronal spinal alignment measurement technique using a navigational tool for a 3D spinal rod bending system in adult spinal deformity cases. J Neurosurg Spine 36(1):62–70. https://doi.org/10.3171/2021.3.Spine201856. (Epub 20210903 PubMed PMID: 34479187)

    Article  PubMed  Google Scholar 

  12. Zhang J, Wang Z, Chi P et al (2021) Directionality of lumbosacral fractional curve relative to C7 plumb line, a novel index associated with postoperative coronal imbalance in patients with degenerative lumbar Scoliosis. Spine 46(6):366–373. https://doi.org/10.1097/brs.0000000000003776. (PubMed PMID: 33156287)

    Article  PubMed  Google Scholar 

  13. Zhang J, Wang Z, Chi P (2021) Risk factors for immediate postoperative coronal imbalance in degenerative lumbar scoliosis patients fused to pelvis. Global Spine J 11(5):649–655. https://doi.org/10.1177/2192568220917648

    Article  PubMed  Google Scholar 

  14. Ha AS, Tuchman A, Matthew J et al (2021) Intraoperative versus postoperative radiographic coronal balance for adult spinal deformity surgery. Spine Deform 9(4):1077–1084. https://doi.org/10.1007/s43390-021-00297-4. (Epub 20210224 PubMed PMID: 33625662)

    Article  PubMed  Google Scholar 

  15. Zhang J, Wang Z, Chi P et al (2020) Coronal T1 pelvic tilt, a novel predictive index for global coronal alignment in adult spinal deformity. Spine 45(19):1335–1340. https://doi.org/10.1097/brs.0000000000003522. (PubMed PMID: 32355135)

    Article  PubMed  Google Scholar 

  16. Andras L, Yamaguchi KT Jr, Skaggs DL et al (2012) Surgical technique for balancing posterior spinal fusions to the pelvis using the T square of Tolo. J Pediatr Orthop 32(8):e63–e66. https://doi.org/10.1097/BPO.0b013e318273b666. (PubMed PMID: 23147633)

    Article  PubMed  Google Scholar 

  17. Kurra S, Metkar U, Yirenkyi H et al (2018) Assessment of coronal spinal alignment for adult spine deformity cases after intraoperative t square shaped use. Spine Deform 6(3):267–272. https://doi.org/10.1016/j.jspd.2017.10.012. (PubMed PMID: 29735136)

    Article  PubMed  Google Scholar 

  18. Zhang J, Chi P, Cheng J et al (2021) A novel integrated global coronal aligner helps prevent post-operative standing coronal imbalance in adult spinal deformity patients fused to pelvis: technical notes and preliminary results. BMC Musculoskelet Disord. https://doi.org/10.1186/s12891-021-04147-2

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ohba T, Ebata S, Oda K et al (2021) Utility of a computer-assisted rod bending system to avoid pull-out and loosening of percutaneous pedicle screws. Clin Spine Surg 34(3):E166–E171. https://doi.org/10.1097/bsd.0000000000001099. (PubMed PMID: 33060429)

    Article  PubMed  Google Scholar 

  20. Kanda Y (2013) Investigation of the freely available easy-to-use software “EZR” for medical statistics. Bone Marrow Transplant 48(3):452–458. https://doi.org/10.1038/bmt.2012.244. (Epub 20121203 PubMed PMID: 23208313; PubMed Central PMCID: PMCPMC3590441)

    Article  CAS  PubMed  Google Scholar 

  21. Glassman SD, Berven S, Bridwell K et al (2005) Correlation of radiographic parameters and clinical symptoms in adult scoliosis. Spine 30(6):682–688. https://doi.org/10.1097/01.brs.0000155425.04536.f7. (PubMed PMID: 15770185)

    Article  PubMed  Google Scholar 

  22. Duval-Beaupère G, Schmidt C, Cosson P (1992) A Barycentremetric study of the sagittal shape of spine and pelvis: the conditions required for an economic standing position. Ann Biomed Eng 20(4):451–462. https://doi.org/10.1007/bf02368136. (PubMed PMID: 1510296)

    Article  PubMed  Google Scholar 

  23. Schwab F, Ungar B, Blondel B et al (2012) Scoliosis research society-schwab adult spinal deformity classification: a validation study. Spine 37(12):1077–1082. https://doi.org/10.1097/BRS.0b013e31823e15e2. (PubMed PMID: 22045006)

    Article  PubMed  Google Scholar 

  24. Lafage V, Schwab F, Patel A et al (2009) Pelvic tilt and truncal inclination: two key radiographic parameters in the setting of adults with spinal deformity. Spine 34(17):E599-606. https://doi.org/10.1097/BRS.0b013e3181aad219. (PubMed PMID: 19644319)

    Article  PubMed  Google Scholar 

  25. Protopsaltis T, Schwab F, Bronsard N et al (2014) TheT1 pelvic angle, a novel radiographic measure of global sagittal deformity, accounts for both spinal inclination and pelvic tilt and correlates with health-related quality of life. J Bone Joint Surg Am 96(19):1631–1640. https://doi.org/10.2106/jbjs.M.01459. (PubMed PMID: 25274788)

    Article  PubMed  Google Scholar 

  26. Bao H, Yan P, Qiu Y et al (2016) Coronal imbalance in degenerative lumbar scoliosis: Prevalence and influence on surgical decision-making for spinal osteotomy. Bone Joint J 98-b(9):1227–1233. https://doi.org/10.1302/0301-620x.98b9.37273. (PubMed PMID: 27587525)

    Article  CAS  PubMed  Google Scholar 

  27. Bao H, Liu Z, Zhang Y et al (2019) Sequential correction technique to avoid postoperative global coronal decompensation in rigid adult spinal deformity: a technical note and preliminary results. Eur Spine J 28(9):2179–2186. https://doi.org/10.1007/s00586-019-06043-9. (Epub 20190625 PubMed PMID: 31240438)

    Article  PubMed  Google Scholar 

  28. Ploumis A, Simpson AK, Cha TD et al (2015) Coronal spinal balance in adult spine deformity patients with long spinal fusions: a minimum 2- to 5-year follow-up study. J Spinal Disord Tech 28(9):341–347. https://doi.org/10.1097/BSD.0b013e3182aab2ff. (PubMed PMID: 24077418)

    Article  PubMed  Google Scholar 

  29. Tanaka N, Ebata S, Oda K et al (2020) Predictors and clinical importance of postoperative coronal malalignment after surgery to correct adult spinal deformity. Clin Spine Surg 33(7):E337–E341. https://doi.org/10.1097/bsd.0000000000000947. (PubMed PMID: 31996535)

    Article  PubMed  Google Scholar 

  30. Obeid I, Berjano P, Lamartina C et al (2019) Classification of coronal imbalance in adult scoliosis and spine deformity: a treatment-oriented guideline. Eur Spine J 28(1):94–113. https://doi.org/10.1007/s00586-018-5826-3

    Article  PubMed  Google Scholar 

  31. Shu S, Jing W, Zhu Z et al (2020) Risk factors for postoperative coronal decompensation in adult lumbar scoliosis after posterior correction with osteotomy. Arch Orthop Trauma Surg. https://doi.org/10.1007/s00402-020-03633-x

    Article  PubMed  Google Scholar 

  32. Brown KM, Ludwig SC, Gelb DE (2004) Radiographic predictors of outcome after long fusion to L5 in adult scoliosis. J Spinal Disord Tech 17(5):358–366. https://doi.org/10.1097/01.bsd.0000112080.04960.67. (PubMed PMID: 15385874)

    Article  PubMed  Google Scholar 

  33. Lewis SJ, Keshen SG, Kato S et al (2018) Risk factors for postoperative coronal balance in adult spinal deformity surgery. Global Spine J 8(7):690–697. https://doi.org/10.1177/2192568218764904. (Epub 20180327 PubMed PMID: 30443478; PubMed Central PMCID: PMCPMC6232708)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

We have not received any funding to disclose.

Author information

Authors and Affiliations

Authors

Contributions

All the authors whose names appear on the submission made substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data; or the creation of new software used in the work; drafted the work or revised it critically for important intellectual content; approved the version to be published; and agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Naobumi Hosogane.

Ethics declarations

Conflict of interest

TT, YT, KK, HS, MT, KN, HK, and NH declare that have no conflict of interest.

Ethical approval

This study was approved by the Institutional Review Board of Kyorin University School of Medicine (IRB No. R04-183).

Informed consent

Informed consent was obtained from all the participants in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takeuchi, T., Takamizawa, Y., Konishi, K. et al. Evaluation of intraoperative coronal alignment using a computer-assisted rod bending system (CARBS) without intraoperative radiation exposure in adult spinal deformity surgery: a technical note and preliminary results. Spine Deform 11, 1199–1208 (2023). https://doi.org/10.1007/s43390-023-00698-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43390-023-00698-7

Keywords

Navigation