Skip to main content

Advertisement

Log in

A comparative morphometric analysis of operative windows for performing OLIF among normal and deformity group in lower lumbar spine

  • Case Series
  • Published:
Spine Deformity Aims and scope Submit manuscript

Abstract

Purpose

To assess the radiological morphometric parameters of OLIF surgical technique in lower lumbar spine among normal and in patients with adult degenerative spine (levoscoliosis and dextroscoliosis).

Method

Standing AP radiographs and MRI in supine position were taken. Patients were divided into 3 groups based on Cobbs’ angle into normal, levo and dextro scoliosis. Moros classification was used to calculate bare window (BW), vascular window (VW), Psoas window (PW), psoas major height (pmh) and width (pmw) at lower lumbar levels and measurements were done on PACS.

Results

Seventy five patients (25 in each group) were assessed. BW has trend from L2-L3 > L3-L4 > L4-L5 in dextro and levoscoliosis. PW has trend from L3-L4 > L2-L3 > L4-L5 in levoscoliosis and normal group. VW has trend from L4-L5 > L3-L4 > L2-L3 in dextro and levoscoliosis; pmw has trend from L4-L5 > L3-L4 > L2-L3 in Levo and dextroscoliosis; pmh has trend from L4-L5 > L3-L4 > L2-L3 in levoscoliosis and normal group.

Conclusion

BW was noted to be highest at L3-4, lowest at L4-5 in normal group. VW was constant, BW showed a reverse trend with PW across all the levels. Though levoscoliosis group of patients had significantly higher BW, psoas retraction issues are to be kept in mind in view of anatomically taught psoas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kaul R, Kumar H, Jeyaraman M et al (2021) MRI-based morphometric study regarding operative windows of oblique lumbar interbody fusion in Indian population. Indian J Orthop. https://doi.org/10.1007/s43465-021-00393-7

    Article  PubMed  PubMed Central  Google Scholar 

  2. Silvestre C, Mac-Thiong JM, Hilmi R et al (2012) Complications and morbidities of mini-open anterior retroperitoneal lumbar interbody fusion: oblique lumbar interbody fusion in 179 patients. Asian Spine J 6(2):89–97. https://doi.org/10.4184/asj.2012.6.2.89

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wang Z, Liu L et al (2020) The OLIF working corridor based on magnetic resonance imaging: retrospective research. J Orthop Surg Res 15(1):141. https://doi.org/10.1186/s13018-020-01654-1

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ohtori S, Orita S et al (2015) Mini-open anterior retroperitoneal lumbar interbody fusion: oblique lateral interbody fusion for lumbar spinal degeneration disease. Yonsei Med J 56(4):1051. https://doi.org/10.3349/ymj.2015.56.4.1051

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sato J, Ohtori S, Orita S et al (2017) “Radiographic evaluation of indirect decompression of mini-open anterior retroperitoneal lumbar interbody fusion: oblique lateral interbody fusion for degenerated lumbar spondylolisthesis” by Jun by Jun Sato et al. Eur Spine J 2017(26):671–678. https://doi.org/10.1007/s00586-017-5326-x

    Article  Google Scholar 

  6. Jin C, Jaiswal MS, Jeun S-S et al (2018) Outcomes of oblique lateral interbody fusion for degenerative lumbar disease in patients under or over 65 years of age. J Orthop Sur Res 13(1):38. https://doi.org/10.1186/s13018-018-0740-2

    Article  Google Scholar 

  7. Ozgur BM, Aryan HE, Pimenta L et al (2006) Extreme lateral interbody fusion (XLIF): a novel surgical technique for anterior lumbar interbody fusion. Spine J 6(4):435–443. https://doi.org/10.1016/j.spinee.2005.08.012

    Article  PubMed  Google Scholar 

  8. Mayer HM (1997) A new microsurgical technique for minimally invasive anterior lumbar interbody fusion. Spine (Phila Pa 1976) 22:691–699

    Article  CAS  PubMed  Google Scholar 

  9. Moro T, Kikuchi S-I et al (2003) An anatomic study of the lumbar plexus with respect to retroperitoneal endoscopic surgery. Spine 28(5):423–427. https://doi.org/10.1097/01.brs.0000049226.87064.3b

    Article  PubMed  Google Scholar 

  10. Chen X, Chen J, Zhang F (2019) Imaging anatomic research of oblique lumbar interbody fusion in a Chinese population based on magnetic resonance. World Neurosurg 128:e51–e58. https://doi.org/10.1016/j.wneu.2019.03.244

    Article  PubMed  Google Scholar 

  11. Davis TT, Hynes RA et al (2014) Retroperitoneal oblique corridor to the L2–S1 intervertebral discs in the lateral position: an anatomic study. J Neurosurg Spine 21:785–793. https://doi.org/10.3171/2014.7.SPINE13564

    Article  PubMed  Google Scholar 

  12. Watkins RG, Hanna R et al (2014) Sagittal alignment after lumbar interbody fusion. J Spinal Disord Tech 27(5):253–256. https://doi.org/10.1097/BSD.0b013e31828a8447

    Article  PubMed  Google Scholar 

  13. Fujibayashi S, Kawakami N et al (2017) Complications associated with lateral interbody fusion. Spine. https://doi.org/10.1097/brs.0000000000002139

    Article  PubMed  Google Scholar 

  14. LiMobbs JXRJ et al (2018) Morphometric MRI imaging study of the corridor for the oblique lumbar interbody fusion technique at L1-L5. World Neurosurg 111:e678–e685. https://doi.org/10.1016/j.wneu.2017.12.136

    Article  Google Scholar 

  15. Elowitz E, Yanni D, Chwajol M et al (2011) Evaluation of indirect decompression of the lumbar spinal canal following minimally invasive lateral transpsoas interbody fusion: radiographic and outcome analysis. Min Minim Invasive Neurosurg 54:201–206. https://doi.org/10.1055/s-0031-1286334

    Article  CAS  PubMed  Google Scholar 

  16. Oliveira L, Marchi L et al (2010) A radiographic assessment of the ability of the extreme lateral interbody fusion procedure to indirectly decompress the neural elements. Spine 35(Supplement):S331–S337. https://doi.org/10.1097/brs.0b013e3182022db0

    Article  PubMed  Google Scholar 

  17. Yuan W, Kaliya-Perumal A-K et al (2019) Does lumbar interbody cage size influence subsidence? A biomechanical study. Spine. https://doi.org/10.1097/brs.0000000000003194

    Article  PubMed  Google Scholar 

  18. Zhu G, Hao Y et al (2018) Comparing stand-alone oblique lumbar interbody fusion with posterior lumbar interbody fusion for revision of rostral adjacent segment disease. Medicine 97(40):e12680. https://doi.org/10.1097/MD.0000000000012680

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kim D-B, Shin M-H et al (2018) Vertebral body rotation in patients with lumbar degenerative scoliosis: surgical implication for oblique lumbar interbody fusion. World Neurosurg. https://doi.org/10.1016/j.wneu.2018.12.073

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ng JP, Kaliya-Perumal AK, Tandon AA et al (2020) The oblique corridor at L4–L5: a radiographic-anatomical study into the feasibility for lateral interbody fusion. Spine (Phila Pa 1976) 45(10):E552–E559. https://doi.org/10.1097/BRS.0000000000003346

    Article  PubMed  Google Scholar 

  21. Regev GJ, Kim CW (2014) Safety and the anatomy of the retroperitoneal lateral corridor with respect to the minimally invasive lateral lumbar intervertebral fusion approach. Neurosurg Clin N Am 25(2):211–218. https://doi.org/10.1016/j.nec.2013.12.001

    Article  PubMed  Google Scholar 

  22. Silva FE, Lenke LG (2010) Adult degenerative scoliosis: evaluation and management. Neurosurg Focus 28(3):E1. https://doi.org/10.3171/2010.1.focus09271

    Article  PubMed  Google Scholar 

  23. TempelGandhoke ZJGS et al (2014) Radiographic and clinical outcomes following combined lateral lumbar interbody fusion and posterior segmental stabilization in patients with adult degenerative scoliosis. Neurosurg Focus 36(5):E11. https://doi.org/10.3171/2014.3.focus13368

    Article  Google Scholar 

  24. Birknes JK, Harrop JS et al (2008) Adult degenerative scoliosis. Neurosurgery 63(Supplement):A94–A103. https://doi.org/10.1227/01.neu.0000325485.49323.b2

    Article  Google Scholar 

  25. Aebi M (2005) The adult scoliosis. Eur Spine J 14(10):925–948. https://doi.org/10.1007/s00586-005-1053-9

    Article  PubMed  Google Scholar 

  26. Molinares DM, Davis TT et al (2016) Retroperitoneal oblique corridor to the L2–S1 intervertebral discs: an MRI study. J Neurosurg Spine 24(2):248–255. https://doi.org/10.3171/2015.3.SPINE13976

    Article  PubMed  Google Scholar 

  27. Liu L, LiangZhang YH et al (2016) Imaging anatomical research on the operative windows of oblique lumbar interbody fusion. PLoS ONE 11(9):e0163452. https://doi.org/10.1371/journal.pone.0163452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang F, Xu H et al (2017) Does right lateral decubitus position change retroperitoneal oblique corridor? A radiographic evaluation from L1 to L5. Eur Spine J 26(3):646–650. https://doi.org/10.1007/s00586-016-4645-7

    Article  PubMed  Google Scholar 

  29. Milbrandt TA, Sucato DJ (2007) The position of the aorta relative to the spine in patients with left thoracic scoliosis. Spine 32(12):E348–E353. https://doi.org/10.1097/brs.0b013e318059aeda

    Article  PubMed  Google Scholar 

  30. Sevastik B, Xiong B, Hedlund R et al (1996) The position of the aorta in relation to the vertebra in patients with idiopathic thoracic scoliosis. Surg Radiol Anat 18(1):51–56. https://doi.org/10.1007/bf03207763

    Article  CAS  PubMed  Google Scholar 

  31. Liang Yan, Shuai Xu, Zhao Yongfei et al (2021) The effects of vertebral rotation on the position of the aorta relative to the spine in patients with adult degenerative scoliosis. Therapeutic. https://doi.org/10.1177/20206223211027108

    Article  Google Scholar 

Download references

Funding

No funding was received for this work.

Author information

Authors and Affiliations

Authors

Contributions

DD: approved the version to be published, drafted the article. VP: acquisition/analysis/interpretation of data. BD: conception of work. AK: drafted the work. SM: drafted the work. RRR: interpretation of data. SB: acquisition and analysis of data. PA: approved the article version. PA: investigated and resolved questions related to the integrity of work.

Corresponding author

Correspondence to Devanand Degulmadi.

Ethics declarations

Conflict of interest

No conflict of interest.

Ethical approval

The study was approved institutional ethical committee and has been registered in the clinical trial registration of India (CTRI/2022/02/040128).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Degulmadi, D., Parmar, V., Dave, B. et al. A comparative morphometric analysis of operative windows for performing OLIF among normal and deformity group in lower lumbar spine. Spine Deform 11, 455–462 (2023). https://doi.org/10.1007/s43390-022-00594-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43390-022-00594-6

Keywords

Navigation