Skip to main content

Advertisement

Log in

Short-circuit fault detection scheme for DC microgrids on offshore platforms

  • Original Article
  • Published:
Journal of Power Electronics Aims and scope Submit manuscript

Abstract

DC microgrids present a very effective solution that enables the power systems of offshore platforms to achieve increased integration of renewable sources. Since the areas of offshore platforms are limited, the associated DC microgrids have lower line impedances, and short-circuit faults cause fault currents to rise rapidly. Thus, fault detection is a challenging issue due to the strict time limits for interruption imposed by these rapid rising fault currents. According to the fault characteristics and the ring structure of DC microgrids, this paper proposes a rapid detection scheme based on the differential current and current derivative without de-energizing the entire DC microgrid. It achieves rapid and selective fault detection and ensures an uninterruptible load power. The synchronization issues of the current differential and a rapid processing method for fault currents are investigated. The tripping threshold settings are discussed. Implementation of the fault detection scheme is also presented in detail. The proposed scheme is verified on a physical experimental platform. It is shown that here are some advantages such as good selectivity, low cost, and rapid fault detection. The scheme provides a strong guarantee for the uninterruptible operation of important equipment on offshore platforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Meng, Q.W., Gao, H., Zhong, Z.F.: Safety analysis of offshore platform power system considering low voltage crossing capability. IEEE Access. 8, 140621–140631 (2020)

    Article  Google Scholar 

  2. Zhu, Z., Tang, Y., Han, T.: Offshore platform detection based on harris detector and intensity-texture image from Sentinel_2A image. In: 2018 10th IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS). Changsha China, pp. 1–04 (2018)

  3. Kamarlouei, M.: Experimental analysis of wave energy converters concentrically attached on a floating offshore platform. Renewa. Energy. 152, 1171–1185 (2020)

    Article  Google Scholar 

  4. Shah, K.A., Meng, F., Li, Y., et al.: A synthesis of feasible control methods for floating offshore wind turbine system dynamics. Renew. Sustain. Energy Rev. 151, 111525 (2021)

    Article  Google Scholar 

  5. Md, R.K.R., Mehnaz, A.K., Iqbal, H.: Local measurement-based protection coordination system for a standalone DC microgrid. IEEE Trans. Ind. Appl. 57(5), 5332–5344 (2021)

    Article  Google Scholar 

  6. Sharma, N.K., Pattanayak, R., Samantaray, S.R., Bhende, C.N.: A fast fault detection scheme for low voltage DC microgrid. In: 2020 21st National Power System Conference (NPSC). Gandhinagar, India, pp. 1–6 (2020)

  7. Emhemed, A.A.S., Fong, K., Fletcher, S., Burt, G.M.: Validation of fast and selective protection scheme for an LVDC distribution network. IEEE Trans. Power Deliv. 32(3), 1432–1440 (2017)

    Article  Google Scholar 

  8. Shabani, A., Mazlumi, K.: Evaluation of a communication-assisted overcurrent protection scheme for photovoltaic-based DC microgrid. IEEE Trans. Smart Grid. 11(1), 429–439 (2020)

    Article  Google Scholar 

  9. Shamsoddini, M., Vahidi, B., Razani, R., Mohamed, Y.A.: A novel protection scheme for low voltage DC microgrid using inductance estimation. Int.l J. Electr. Power Energy Syst. 120, 105992 (2020)

    Article  Google Scholar 

  10. Augustine, S., Reno, M.J., Brahma, S.M., Lavrova, O.: Fault current control and protection in a standalone dc microgrid using adaptive droop and current derivative. IEEE J. Emerg. Top. Power Electron. 9(3), 2529–2539 (2021)

    Article  Google Scholar 

  11. Dhar, S., Patnaik, R.K., Dash, P.K.: Fault detection and location of photovoltaic based DC microgrid using differential protection strategy. IEEE Trans. Smart Grid. 9(5), 4303–4312 (2017)

    Article  Google Scholar 

  12. Steven, D.A.F., Patrick, J.N., Kenny, F., Galloway, S.J., Graeme, M.B.: High-speed differential protection for smart DC distribution systems. IEEE Trans. Smart Grid. 5(5), 2610–2617 (2014)

    Article  Google Scholar 

  13. Chen, Y., Haj-ahmed, M.A., Illindala, M.S.: Protection strategies for medium-voltage direct-current microgrid at a remote area mine site. IEEE Trans. Ind. Appl. 51(4), 2846–2853 (2015)

    Article  Google Scholar 

  14. Li, H.J., Chen, M., Yang, B.P., Blaabjerg, F., Xu, D.H.: Fast fault protection based on direction of fault current for the high-surety power-supply system. IEEE Trans. Power Electron. 34(6), 5787–5802 (2019)

    Article  Google Scholar 

  15. Neelesh, Y., Narsa, R.T.: Short-circuit fault detection and isolation using filter capacitor current signature in low-voltage DC microgrid applications. IEEE Trans. Ind. Electron. 69(8), 8491–8500 (2022)

    Article  Google Scholar 

  16. Yang, Y., Huang, C., Zhou, D., et al.: Fault detection and location in multi-terminal DC microgrid based on local measurement. Electr. Power Syst. Res. 194, 107047 (2021)

    Article  Google Scholar 

  17. Jayamaha, D.K.J.S., Lidula, N.W.A., Rajapakse, A.D.: Wavelet-multi resolution analysis based ANN architecture for fault detection and localization in DC microgrids. IEEE Access. 7, 145371–145384 (2019)

    Article  Google Scholar 

  18. Lin, H.W., Sun, K., Tan, Zh.H., Liu, C.X., Guerrero, J.M., Vasquez, J.C.: Adaptive protection combined with machine learning for microgrids. IET Gener. Transm. Distrib. 13(6), 770–779 (2019)

    Article  Google Scholar 

  19. Mohanty, R., Pradhan, A.K.: Protection of smart DC microgrid with ring configuration using parameter estimation approach. IEEE Trans. Smart Grid. 9(6), 6328–6337 (2018)

    Article  Google Scholar 

  20. Yao, G., Ji, F.P., Yin, Z.Z., Zhou, L.D., Wang, F.H.: Review on the research of DC power distribution power quality. Power Syst. Prot. Control. 45(16), 163–170 (2017)

    Google Scholar 

  21. Kim, D., Kim, S.: Design and analysis of hybrid DC circuit breaker for LVDC grid systems. J. Power Electron. 21(9), 1395–1405 (2021)

    Article  Google Scholar 

  22. Xi, J.W., Pei, X.Z., Niu, L.Y., et al.: A solid-state circuit breaker for DC system using series and parallel connected IGBTs. Int. J. Electr. Power Energy Syst. 139, 107996 (2022)

    Article  Google Scholar 

  23. Wang, G.L., Liu, Y.J., Li, Y., Xu, S.X., Lin, G. Z.: A wind-light and storage DC microgrid system in a floating mobile platform about wind measured by radar. CHINA. Patent 201910841120.7, (2019)

  24. Li, Z.Y., Wang, G.L., Yang, Y.S., Yang, R.F., Xu, S.X.: A combined short-circuit fault detection method for DC microgrid system in an offshore platform. Chin. J. Sci. Instrum. 42(1), 157–164 (2021)

    Google Scholar 

  25. Meghwani, A., Srivastava, S.C., Chakrabarti, S.: A non-unit protection scheme for DC microgrid based on local measurements. IEEE Trans. Power Deliv. 32(1), 172–181 (2017)

    Article  Google Scholar 

  26. Shamsoddini, M., Vahidi, B., Razani, R., et al.: A novel protection scheme for low voltage DC microgrid using inductance estimation. Int. J. Electr. Power Energy Syst. 120, 105992 (2020)

    Article  Google Scholar 

  27. Emhemed, A., Fong, K., Fletcher, S., et al.: Validation of fast and selective protection scheme for an LVDC distribution network. IEEE Trans. Power Deliv. 32(3), 1432–1440 (2017)

    Article  Google Scholar 

  28. Mohanty, R., Pradhan, A.: Protection of smart DC microgrid with ring configuration using parameter estimation approach. IEEE Trans. Smart Grid. 9(6), 6328–6337 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation for Young Scholars of China under Grant 51809114; the Natural Science Foundation of Fujian province under Grant 2020J01685; and the Jimei University Foundation under Grant ZQ2020020 and Grant ZP2020006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoling Wang.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Sui, H., Zhang, R. et al. Short-circuit fault detection scheme for DC microgrids on offshore platforms. J. Power Electron. 23, 839–849 (2023). https://doi.org/10.1007/s43236-023-00621-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43236-023-00621-3

Keywords

Navigation