Skip to main content
Log in

Full closed loop-based dynamic accuracy enhancement for elastic joints

  • Original Article
  • Published:
Journal of Power Electronics Aims and scope Submit manuscript

Abstract

Owing to the elasticity of transmission systems, actuated joints suffer from dynamic errors that seriously affect the tracking accuracy. Mainly drawing on the full closed loop control strategy, this paper focuses on the dynamic accuracy enhancement of elastic joints. Having proposed a simplified dynamic error modelling method for elastic joints with cascade control, an analytical dynamic error model of the servo drive system is built, allowing the revelation of the influence mechanisms of semi- and full closed loop control schemes on dynamic errors. The dynamic error model indicates that a full closed loop control scheme with a large position loop gain can effectively reduce the elasticity-caused dynamic error. To overcome the strict limitation on the position loop gain of traditional full closed loop control, an additional speed feedback is used to improve the dynamic error reduction capability. Experimental results show that the dynamic error can be dramatically reduced, resulting in a remarkable improvement of tracking accuracy of elastic joints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Siciliano, B., Khatib, O.: Springer handbook of robotics. Springer-Verlag, New York (2007)

    MATH  Google Scholar 

  2. Biagiotti, L., Moriello, L., Melchiorri, C.: Improving the accuracy of industrial robots via iterative reference trajectory modification. IEEE Trans. Control Syst. Technol. 28(3), 831–843 (2020)

    Article  Google Scholar 

  3. Shang, W.W., Cong, S., Ge, Y.: Coordination motion control in the task space for parallel manipulators with actuation redundancy. IEEE Trans. Autom. Sci. Eng. 10(3), 665–673 (2013)

    Article  Google Scholar 

  4. Mokhtari, M., Taghizadeh, M., Mazare, M.: Hybrid adaptive robust control based on CPG and ZMP for a lower limb exoskeleton. Robotica 39(2), 181–199 (2021)

    Article  Google Scholar 

  5. Dumanli, A., Sencer, B.: Pre-compensation of servo tracking errors through data-based reference trajectory modification. CIRP Ann-Manuf. Technol. 68(1), 397–400 (2019)

    Article  Google Scholar 

  6. Li, F.H., Jiang, Y., Li, T.M., Ehmann, K.F.: Compensation of dynamic mechanical tracking errors in ball screw drives. Mechatronics 55, 27–37 (2018)

    Article  Google Scholar 

  7. Shan, X.L., Cheng, G.: Structural error and friction compensation control of a 2(3PUS+S) parallel manipulator. Mech. Mach. Theory 124, 92–103 (2018)

    Article  Google Scholar 

  8. Tian, W.J., Yin, F.W., Liu, H.T., Li, J.H., Li, Q., Huang, T., Chetwynd, D.G.: Kinematic calibration of a 3-DOF spindle head using a double ball bar. Mech. Mach. Theory 102, 167–178 (2016)

    Article  Google Scholar 

  9. Zhu, W.D., Li, G.H., Dong, H.Y., Ke, Y.L.: Positioning error compensation on two-dimensional manifold for robotic machining. Robot. Comput.-Integr. Manuf. 59, 394–405 (2019)

    Article  Google Scholar 

  10. Li, R., Zhao, Y.: Dynamic error compensation for industrial robot based on thermal effect model. Measurement 88, 113–120 (2016)

    Article  Google Scholar 

  11. Lyu, D., Liu, Q., Liu, H., Zhao, W.H.: Dynamic error of CNC machine tools: a state-of-the-art review”. Int. J. Adv. Manuf. Technol. 106(5–6), 1869–1891 (2019)

    Google Scholar 

  12. Dai, L., Yu, Y.T., Zhai, D.H., Huang, T., Xia, Y.Q.: Robust model predictive tracking control for robot manipulators with disturbances. IEEE Trans. Ind. Electron. 68(5), 4288–4297 (2021)

    Article  Google Scholar 

  13. Yang, X., Zhu, L.M., Ni, Y.B., Liu, H.T., Zhu, W.L., Shi, H., Huang, T.: Modified robust dynamic control for a diamond parallel robot. IEEE-ASME. T Mech. 24(3), 959–968 (2019)

    Article  Google Scholar 

  14. Xie, L.B., Qiu, Z.C., Zhang, X.M.: Development of a 3-PRR precision tracking system with full closed-loop measurement and control. Sensors 19(8), 1756 (2019)

    Article  Google Scholar 

  15. Dumanli, A., Sencer, B.: Optimal high-bandwidth control of ball-screw drives with acceleration and jerk feedback. Precis. Eng.-J. Int. Soc. Precis. Eng. Nanotechnol. 54, 254–268 (2018)

    Google Scholar 

  16. Rad, S.A., Tamizi, M.G., Azmoun, M., Masouleh, M.T., Kalhor, A.: Experimental study on robust adaptive control with insufficient excitation of a 3-DOF spherical parallel robot for stabilization purposes. Mech. Mach. Theory 153, 104026 (2020)

    Article  Google Scholar 

  17. Sun, W., Lin, J.W., Su, S.F., Wang, N., Er, M.J.: Reduced adaptive fuzzy decoupling control for lower limb exoskeleton. IEEE T. Cybern. 51(3), 1099–1109 (2021)

    Article  Google Scholar 

  18. Liu, H.T., Liu, H.R., Shan, X.L.: Linear active disturbance rejection control with torque compensation for electric load simulator. J Power Electron 21, 195–203 (2021)

    Article  Google Scholar 

  19. Takahashia, Y., Takahashi, H.: Precise positioning control with double feedback loop for ultralarge scale integrated manufacturing machine. Rev. Sci. Instrum. 73(7), 2791 (2002)

    Article  Google Scholar 

  20. Sun, Z., Pritschow, G., Lechler, A.: Enhancement of feed drive dynamics using additional table speed feedback. CIRP Ann-Manuf. Technol. 65, 357–360 (2016)

    Article  Google Scholar 

  21. Gordon, D.J., Erkorkmaz, K.: Accurate control of ball screw drives using pole-placement vibration damping and a novel trajectory prefilter. Precis. Eng.-J. Int. Soc. Precis. Eng. 37(2), 308–322 (2013)

    Google Scholar 

  22. Ellis, G.: Control system design guide, 4th edn. Academic Press, Cambridge (2012)

    Google Scholar 

  23. Spong, M.W., Hutchinson, S., Vidyasagar, M.: Robot modeling and control. John Wiley & Sons, Hoboken (2006)

    Google Scholar 

  24. Guo, B.Z., Han, J.Q., Xi, F.B.: Linear tracking-differentiator and application to online estimation of the frequency of a sinusoidal signal with random noise perturbation. Int J Syst Sci. 33(5), 351–358 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Funding

The paper is partially supported by the National Natural Science Foundation of China (Grant Number 51805361), the Natural Science Foundation of Tianjin (Grant Number 18JCQNJC04900), the State Key Laboratory of Robotics and System (HIT) (Grant Number SKLRS–2018–KF-09), and the China Postdoctoral Science Foundation (Grant Number 2018M640233).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianlei Shan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Wang, Y. & Shan, X. Full closed loop-based dynamic accuracy enhancement for elastic joints. J. Power Electron. 22, 959–969 (2022). https://doi.org/10.1007/s43236-022-00438-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43236-022-00438-6

Keywords

Navigation