Skip to main content
Log in

Detrital zircon grains analyzed for U–Pb ages for sedimentary provenance studies: tectonic-driven deposition of the Resende Basin (Eocene–Oligocene) in Southeast Brazil

  • Research
  • Published:
Journal of Sedimentary Environments Aims and scope Submit manuscript

Abstract

The Resende Basin (Eocene–Oligocene) is a continental taphrogenic structure associated with the Continental Rift of Southeast Brazil and includes the Itatiaia and Acácias members. While the sediment provenance of the Itatiaia member is known, such knowledge regarding the Acácias Member is lacking. This work studies U–Pb ages and Lu–Hf data analyzed by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) in detrital zircons to investigate the sandstone provenance of the Acácias Member. The results suggest that Acácias Member rocks are composed predominantly of Neoproterozoic sources (60%), significant Paleoproterozoic sources (34%), and smaller contributions from Mesoproterozoic (4%) and Archean (2%) sources. The orthogneisses of the Juiz de Fora and Quirino complexes and the metasedimentary rocks of the Andrelandia Complex and Paraíba do Sul were probably the source rocks of Archean and Paleoproterozoic materials. The metasedimentary Embú Complex may be the source of Mesoproterozoic sediments, and the granitoid bodies located south of the Resende Basin (namely, the Rio Turvo granitoid) were important Neoproterozoic origins. No Late Cretaceous ages were found in the 611 analyzed zircons, suggesting that the extensional process that originated in the basin occurred before the Itatiaia alkaline intrusions. In addition, other causes for the lack of zircon grains with the age of alkaline intrusive rocks (Morro Redondo ≈ 72–70 Ma; Itatiaia ≈ 70 Ma) is related to the basin location with a structural high. This feature could have prevented the alkaline detritus from the Itatiaia and Morro Redondo intrusive bodies from reaching the study area and restricted the supply of sediments from a fluvial system with tributaries on the northern edge. In conclusion, the U–Pb ages in the detrital zircons obtained in this work reveal that the sediments of the Resende basin were tectonically driven. Interpretations of tectonic environments that affected sediment deposition require a thorough understanding of this basin stratigraphy and factors that partitioned the sedimentary processes, such as the directions of currents and the presence of structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability statement

All new data acquired for this work are available as supplementary materials.

References

  • Albuquerque, A. P. B., Mello, C. L., Pizani, T. C., & Silva Junior, G. C. (2001). Análise dos padrões de fraturamento neotectônico e a sua possível aplicação na avaliação hidrogeológica da bacia sedimentar de Resende (RJ). In: I Simposio de Hidrogeologia do Sudeste (pp. 165–173). Retrieved from https://aguassubterraneas.abas.org/asubterraneas/article/view/23968/16020

  • Almeida, F. F. (1991). O alinhamento magmático de Cabo Frio. In: Simpósio de Geologia do Sudeste, 2, São Paulo, Anais, São Paulo: SBG/NSP e SBG/NRJ, pp. 423–428.

  • Almeida, F. F. (1996). Correlação do magmatismo das bacias da margem continental brasileira com o das áreas emersas adjacentes. Revista Brasileira de geociências, 26, 125–138.

    Google Scholar 

  • Alves, M.I., Almeida, B.S., Cardoso, L.M.C., Santos, A.C., Appi, C., Bertotti, A.L., Chemale, F., Tavares Jr, A.D., Martins, M. V. A., & Geraldes, M. C. (2019). Isotopic composition of Lu, Hf and Yb in GJ-01, 91500 and mud tank reference materials measured by LA-ICP-MS: application of the Lu-Hf geochronology in zircon. Journal of Sedimentary Environments, 4(2), 220–248.

    Article  Google Scholar 

  • Amelin, Y., Lee, D.-C., Halliday, A. N., & Pidgeon, R. T. (1999). Nature of the Earth’s earliest crust from hafnium isotopes in single detrital zircons. Nature, 399, 252–255.

    Article  Google Scholar 

  • Amidon, W. H., Burbank, D. W., & Gehrels, G. E. (2005). U-Pb zircon ages as a sediment mixing tracer in the Nepal Himalaya. Earth and Planetary Science Letters, 235, 244–260. https://doi.org/10.1016/j.epsl.2005.03.019

    Article  Google Scholar 

  • Andersen, T. (2005). Detrital zircons as tracers of sedimentary provenance: Limiting conditions from statistics and numerical simulation. Chemical Geology, 216, 249–270. https://doi.org/10.1016/j.chemgeo.2004.11.013

    Article  Google Scholar 

  • Augustsson, C., Bahlburg, H., Fanning, M., & Münker, C. (2003). Detrital zircons are critical to sediment sources; coupled U-Pb ages and Hf isotope compositions of zircons from Paleozoic sediments of the SW margin of Gondwana. Geophysical Research Abstracts, 5, 00302.

    Google Scholar 

  • Azzone, R. G., Ruberti, E., Rojas, G. E. E., & Gomes, C. B. (2009). Geologia e Geocronologia do Maciço Alcalino Máfico-Ultramáfico Ponte Nova (SP-MG). Revista do instituto de geociências - USP, Série Científica, São Paulo, 9, 23–46.

    Article  Google Scholar 

  • Bertotti, A. L., Chemale Jr, F., & Kawashita, K. (2013). Lu-Hf em zircão por LA-MC-ICP-MS: aplicação em gabro do Ofiolito Aburrá, Colômbia. Pesquisas Em Geociências, 40(2), 117–127. https://doi.org/10.22456/1807-9806.43075 .

    Article  Google Scholar 

  • Bizzi, L. A., Schobbenhaus, C., Vidotti, R. M., & Gonçalves, J. H. (2003). Geologia, Tectônica e Recursos Minerais do Brasil: texto, mapas e SIG. CPRM.

  • Bouvier, A., Vervoort, J. D., & Patchett, P. J. (2008). The Lu-Hf, and Sm-Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters, 273, 48–57. https://doi.org/10.1016/j.epsl.2008.06.010

    Article  Google Scholar 

  • Brêda, T. C., Ramos, R. R. C., & Mello, C. L. (2013). Análise petrográfica de arenitos da Formação Resende (Bacia de Resende, RJ). Geociências (são paulo), 32, 659–676.

    Google Scholar 

  • Brito Neves, B. D., & Sato, K. (1998). Chronological milestones in the evolution of the South American Continent. In: UFOP, International conference on basement tectonics (Vol. 14, pp. 2–4).

  • Brito Neves, B., Teixeira, W., Tassinari, C. C. G., & Kawashita, K. (1990). A contribution to the subdivision of Precambrian in South America. Revista Brasileira de geologia, 20, 267–276.

    Google Scholar 

  • Brotzu, P., Melluso, L., & Beccaluva, L. (1989). Petrological and geochemical studies of alkaline rocks from continental Brazil. The syenitic intrusion of Morro Redondo. RJ. Geochimica Brasiliensis, 3, 63–80.

    Google Scholar 

  • Cardoso, L. M. C. (2019). Estudosisotópicos de U-Pb e Lu-Hf em zircão das intrusões de Itatiaia, Tinguá e Morro dos Gatos: implicações petrogenéticas na formação das rochas alcalinas do estado do Rio de Janeiro. Graduation Monograph, Faculdade de Geologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro

  • Carrapa, B., & DeCelles, P. G. (2006). Eocene detrital record of the Argentina Puna: Implications for early plateau development. Geological Society of America Abstracts with Programs, Special Meeting Nº., 2, 33.

    Google Scholar 

  • Cavalcante, J. C., et al. (1979). Projeto Sapucaí. Brasília-DF: DNPM/CPRM, Série Geológica, 5, Seção Geologia Básica

  • Cawood, P. A., Hawkesworth, C. J., & Dhuime, B. (2012). Detrital zircon record and tectonic setting. Geology, 40, 875–878. https://doi.org/10.1130/G32945.1

    Article  Google Scholar 

  • Choi, S. H., Mukasa, S. B., Andronikov, A., Osanai, Y., Harley, S., & Kelly, N. (2006). Lu-Hf systematics of the ultra-high temperature Napier Metamorphic Complex in Antarctica: Evidence for the early Archean differentiation of Earth’s mantle. Earth and Planetary Science Letters, 246, 305–316. https://doi.org/10.1016/j.epsl.2006.04.012

    Article  Google Scholar 

  • Cordani, U. G., Delhal, J., & Ledent, D. (1973). Orogenéses superposées dans le Précambrien du Brésil sud-oriental (États de Rio de Janeiro et de Minas Gerais). Revista Brasileira de geociências, 3, 1–22.

    Google Scholar 

  • DeCelles, P. G., Gehrels, G. E., Najman, Y., Martin, A. J., Carter, A., & Garzanti, E. (2004). Detrital geochronology and geochemistry of Cretaceous–early Miocene strata of Nepal; implications for timing and diachroneity of initial Himalayan orogenesis. Earth and Planetary Science Letters, 227, 313–330. https://doi.org/10.1016/j.epsl.2004.08.019

    Article  Google Scholar 

  • DeGraaff-Surpless, K., Graham, S. A., Wooden, J. L., & McWilliams, M. O. (2002). Detrital zircon provenance analysis of the Great Valley Group, California: Evolution of an arc-forearc system. Geological Society of America Bulletin, 114, 1564–1580. https://doi.org/10.1130/0016-7606(2002)1142.0.CO;2

    Article  Google Scholar 

  • Dickinson, W. R., & Gehrels, G. E. (2003). U-Pb ages of detrital zircons from Permian and Jurassic eolian sandstones of the Colorado Plateau. USA; Paleogeographic Implications: Sedimentary Geology, 163, 29–66. https://doi.org/10.1016/S0037-0738(03)00158-1

    Article  Google Scholar 

  • Dodson, M. H., Compston, W., Williams, I. S., & Wilson, J. F. (1988). A search for ancient detrital zircons in Zimbabwean sediments. Journal of the Geological Society, 145, 977–983.

    Article  Google Scholar 

  • Duchene, S., Blichert-Toft, J., Luais, B., Telouk, P., & Albarede, F. (1997). The Lu-Hf dating of garnets and the ages of the Alpine high-pressure metamorphism. Nature, 387, 586–589.

    Article  Google Scholar 

  • Duffles, P., Trouw, R. A. J., Mendes, J. C., Gerdes, A., & Vinagre, R. (2016). U-Pb age of detrital zircon from the Embu sequence, Ribeira belt, Se Brazil. Precambrian Research, 278, 69–86. https://doi.org/10.1016/j.precamres.2016.03.007

    Article  Google Scholar 

  • Elhlou, S., Belousova, E., Griffin, W. L., Pearson, N. J., & O’Reilly, S. Y. (2006). Trace element and isotopic composition of GJ-red zircon reference material by laser ablation. In: Goldschmidt conference abstracts, A-5.

  • Escobar, I. (1999). Estudo regional da Bacia de Resende com base no métodogravimétrico. In: Rio de Janeiro: Companhia de Pesquisa de Recursos Minerais–MODESTHI, Relatório Final.

  • Fainstein, R., & Summerhayes, C. P. (1982). Structure and origin of marginal banks of eastern Brazil. Marine Geology, 46, 199–215. https://doi.org/10.1016/0025-3227(82)90080-9

    Article  Google Scholar 

  • Fedo, C. M., Sircombe, K. N., & Rainbird, R. H. (2003). Detrital zircon analysis of the sedimentary record. Reviews in Mineralogy and Geochemistry, 53, 277–303.

    Article  Google Scholar 

  • Fernández-Suárez, J., Gutiérrez-Alonso, G., Jenner, G. A., & Tubrett, M. N. (2000). New ideas on the Proterozoic-Early Palaeozoic evolution of NW Iberia: Insights from U-Pb detrital zircon ages. Precambrian Research, 102, 185–206. https://doi.org/10.1016/S0301-9268(00)00065-6

    Article  Google Scholar 

  • Finney, S. C., Gleason, J., Gehrels, G., Perlata, S., & Vervoort, J. D. (2003). U/Pb geochronology of detrital zircons from Upper Ordovician Las Vacas, La Cantera, and Empozada Formations, NW Argentina. In Albanesi, G. L., et al. (Eds.), Ordovician from the Andes: Tucumán, Proceedings of the 9th international symposium on the ordovician System (Vol. 17, pp. 191–196). Instituto Superior de Correlación Geografica, Universidad Nacional de Tucumán, Serie Correlación Geológica.

  • Finney, S. C., Peralta, S. V., Gehrels, G. E., & Marsaglia, K. (2005). The Ordovician history of the Cuyania (greater Precordillera) terrane of western Argentina; evidence from geochronology of detrital zircons from Middle Cambrian sandstones. Geologica Acta, 3, 339–354.

    Google Scholar 

  • Fischel, D. P., Pimentel, M. M., Fuck, R. A., Costa, A. G., & Rosière, C. A. (1998). Geology and Sm-Nd isotopic data for the Mantiqueira and Juiz de Fora Complexes (Ribeira Belt) in the Abre Campo-Manhuaçu region, Minas Gerais, Brazil. International Conference on Basement Tectonics, 14, 21–23.

    Google Scholar 

  • Gärtner, A., Linnemann, U., Sagawe, A., Hofmann, M., Ullrich, B., & Kleber, A. (2013). Morphology of zircon crystal grains in sediments—Characteristics, classifications, definitions. Geologica Saxonica, 59, 65–73.

    Google Scholar 

  • Gehrels, G. (2014). Detrital zircon U-Pb geochronology applied to tectonics. Annual Review of Earth and Planetary Sciences, 42, 127–149. https://doi.org/10.1146/annurev-earth-050212-124012

    Article  Google Scholar 

  • Gehrels, G. E., Dickinson, W. R., Riley, B. C. D., Finney, S. C., & Smith, M. T., (2000). Detrital zircon geochronology of the Roberts Mountains allochthon, Nevada. In: Soreghan, M. J., & Gehrels, G. E. (Eds.), Paleozoic and Triassic paleogeography and tectonics of western Nevada and northern California (347, pp. 19–42). Geological Society of America Special Paper.

  • Gehrels, G. E., Johnsson, M. J., & Howell, D. G. (1999). Detrital zircon geochronology of the Adams Argillite and Nation River Formation, east-central Alaska, USA. Journal of Sedimentary Research, 69, 135–144.

    Article  Google Scholar 

  • Geraldes, M. C., Motoki, A., Costa, A., Mota, C. E., & Mohriak, W. U. (2013). Geochronology (Ar/Ar and K-Ar) of the South Atlantic post-break-up magmatism. Geological Society Special Publication, 369, 1–34.

    Article  Google Scholar 

  • Gerdes, A., & Zeh, A. (2009). Zircon formation versus zircon alteration—New insights from combined U-Pb and Lu-Hf in-situ LA-ICP-MS analyses, and consequences for interpreting Archean zircon from the Central Zone of the Limpopo Belt. Chemical Geology, 261, 230–243.

    Article  Google Scholar 

  • Gibson, S., Thompson, R., Weska, R., et al. (1997). Late Cretaceous rift-related upwelling and melting the Trindade starting mantle plume head beneath western Brazil. Contributions to Mineralogy and Petrology, 126, 303–314. https://doi.org/10.1007/s004100050252

    Article  Google Scholar 

  • Gray, M. B., & Zeitler, P. K. (1997). Comparison of clastic wedge provenance in the Appalachian foreland using U/Pb ages of detrital zircons. Tectonics, 16, 151–160. https://doi.org/10.1029/96TC02911

    Article  Google Scholar 

  • Griffin, W. L., Pearson, N. J., Belousova, E., Jackson, S. E., O’Reilly, S. Y., Van Achterberg, E., & Shee, S. R. (2000). The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et cosmochimica Acta, 64, 133–147. https://doi.org/10.1016/S0016-7037(99)00343-9

    Article  Google Scholar 

  • Griffin, W. L., Wang, X., Jackson, S. E., Pearson, S. E., O’Reilly, S. Y., Xu, X. S., & Zhou, X. M. (2002). Zircon chemistry and magma genesis, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan Igneous Complexes. Lithos, 61, 237–269. https://doi.org/10.1016/S0024-4937(02)00082-8

    Article  Google Scholar 

  • Hasui, Y., Fonseca, M. J. G., & Ramalho, R. (1984). A parte central da região de dobramentos sudeste e o maciço mediano de Guaxupé. In: Geologia do Brasil-Texto explicativo do Mapa Geológico do Brasil e da área oceânica adjacente incluindo recursos minerais, escala, 1:250,000, (Coords.C. Schobbenhaus, D.A. Campos, G.R. Derze and H.E. Asmus).

  • Hasui, Y., Carneiro, C. D. R., & Coimbra, A. M. (1975). The Ribeira Folded Belt. Revista Brasileira de geociências, 5, 257–264.

    Google Scholar 

  • Heilbron, M., Machado, N., & Duarte, B. P. (2001). Evolution of the Paleoproterozoic Transamazonian Orogen in SE Brazil: a view from the Neoproterozoic Ribeira Belt. In: GAC-MAC Joint Annual Meeting, St. Johns, Canada, Abstracts (Vol. 26, p. 61).

  • Heilbron, M., Pedrosa-Soares, A. C., Campos Neto, M. D. C., Silva, L. D., Trouw, R. A. J., & Janasi, V. D. A. (2004). Província Mantiqueira. In: Mantesso-Neto, V., Bartorelli, A., Carneiro, C. A. D. R., & Brito Neves B. B. (Eds.), Geologia do Continente Sul-Americano—Evolução da Obra de Fernando Flávio Marques de Almeida (pp. 203–235).

  • Heilbron, M., et al. (2007). Geologia e Recursos Minerais das folhas Santa Rita do Jacutinga, Barra do Piraí, Volta Redonda e Angra dos Reis, escala 1: 100,000. CPRM-MME, Brasília, Brazil, 1, 177.

    Google Scholar 

  • Heilbron, M. D. C. P. L. (1993). Evolução tectono-metamórfica da seção Bom Jardim de Minas (MG)-Barra do Pirai (RJ): setor central da Faixa Ribeira. PhD thesis, Universidade de São Paulo.

  • Herz, N. (1977). Time of spreading in the South Atlantic: Information from Brazilian alkalic rocks. Geological Society of America Bulletin, 88, 101–112.

    Article  Google Scholar 

  • Hiruma, S. T., Riccomini, C., Modenesi-Gauttieri, M., Hackspacker, P. C., & Hadler Neto, J. C. (2010). Denudation history of the Bocaina Plateau, Serra do Mar, southeastern Brazil: Relationships to Gondwana breakup a passive margin development. Gondwana Research, 18, 674–687.

    Article  Google Scholar 

  • Horstwood, M. S., Košler, J., Gehrels, G., Jackson, S. E., McLean, N. M., Paton, C., Pearson, N. J., Sircombe, K., Sylvester, P., Vermeesch, P., & Bowring, J. F. (2016). Community-derived standards for LA-ICP-MS U-(Th-) Pb geochronology—Uncertainty propagation, age interpretation, and data reporting. Geostandards & Geoanalytical Research, 40(3), 311–332. https://doi.org/10.1111/j.1751-908X.2016.00379.x

    Article  Google Scholar 

  • Ibañez-Mejia, M., Pullen, A., Pepper, M., Ghoshal, G., & Ibanez-Mejia, J. C. (2018). Use and abuse of detrital zircon U-Pb geochronology—A case from the Río Orinoco delta, eastern Venezuela. Geology, 46(11), 1019–1022. https://doi.org/10.1130/G45596.1

    Article  Google Scholar 

  • Link, P. K., Fanning, C. M., & Beranek, L. P. (2005). Reliability and longitudinal change of detrital zircon ages spectra in the Snake River system, Idaho and Wyoming: An example of reproducing the bumpy barcode. Sedimentary Geology, 182, 101–142. https://doi.org/10.1016/j.sedgeo.2005.07.012

    Article  Google Scholar 

  • Machado, H. T., Valladares, C. S., Valeriano, C. M., Medeiros, S. R., & Duarte, B. P. (2010). Orthogneisses from the Quirino complex, central Ribeira belt, SE Brazil: Sr and Sm-Nd isotopic data. In: VII SSAGI-South American Symposium on Isotope Geology Brasília, 25th–28th July (pp. 93–96).

  • Machado, N., Valladares, C., Heilbron, M., & Valeriano, C. (1996). U-Pb geochronology of the central Ribeira belt (Brazil) and implications for the evolution of the Brazilian Orogeny. Precambrian Research, 79, 347–361. https://doi.org/10.1016/0301-9268(95)00103-4

    Article  Google Scholar 

  • Mello, C. L., Carmo, I. O., Rodrigues, L. F., Metelo, C. M. S., & Albuquerque, A. P. B. (1999). Neotectônica e compartimentação geomorfológica da bacia sedimentar de Resende (RJ). In: Simpósio de Geologia do Sudeste, 6. São Pedro, 1999, Bol. Resumos. São Pedro, SBG/UNESP (p. 101).

  • Melo, M. S., Riccomini, C., Marques de Almeida, F. F., & Hasui, Y. (1985). Sedimentação e tectônica da Bacia de Resende, RJ. Anais da academia Brasileira de ciências, 57, 467–479.

    Google Scholar 

  • Morel, M. L. A., Nebel, O., Nebel-Jacobsen, Y. J., Miller, J. S., & Vroon, P. Z. (2008). Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICP-MS. Chemical Geology, 255, 231–235. https://doi.org/10.1016/j.chemgeo.2008.06.040

    Article  Google Scholar 

  • Morton, A. C., Claoué-Long, J. C., & Berge, C. (1996). SHRIMP constraints on sediment provenance and transport history in the Mesozoic Statfjord Formation, North Sea. Journal of the Geological Society, 153, 915–929.

    Article  Google Scholar 

  • Morton, A. C., Whitham, A. G., & Fanning, C. M. (2005). The provenance of Late Cretaceous to Paleocene submarine fan sandstones in the Norwegian Sea: Integration of heavy mineral, mineral chemical and zircon age data. Sedimentary Geology, 182, 3–28. https://doi.org/10.1016/j.sedgeo.2005.08.007

    Article  Google Scholar 

  • Mota, C. E. M., Geraldes, M. C., Almeida, J. C. H., Vargas, T., Souza, D. M., Loureiro, R. O., & Silva, A. P. (2009). Características isotópicas (Nd e Sr), geoquímicas e petrográficas da intrusão alcalina do Morro de São João: Implicações geodinâmicas e sobre a composição do manto sublitosférico. Revista do instituto de geociências—USP, Série Científica, São Paulo, 9, 85–100.

    Google Scholar 

  • Patchett, P. J., & Tatsumoto, M. (1980). Hafnium isotope variations in oceanic basalts. Geophysical Research Letters, 7, 1077–1080.

    Article  Google Scholar 

  • Patchett, P. J., & Tatsumoto, M. (1981). Lu/Hf in chondrites and definition of a chondritic hafnium growth curve. Lunar and Planetary Science, 12, 822–824.

    Google Scholar 

  • Pereira, R. M. (2001). Caracterização geocronológica, geoquímica, geofísica e metalogênica de alguns plutonitos graníticos da região do médio rio Paraíba do Sul e alto Rio Grande, segmento central da Faixa Ribeira. Rio de Janeiro

  • Pulle, A., Ibáñez-Mejía, M., Gehrels, G., Ibáñez-Mejía, J. C., & Pech, M. (2014). What happens when n = 1000? Creating large-n geochronological datasets with LA-ICP-MS for geologic investigations. Journal of Analytical Atomic Spectrometry, 29, 971–980.

    Article  Google Scholar 

  • Ramos, R. R. C. (1997). Estratigrafia da sucessão sedimentar terciária da Bacia de Resende, entre Resende e Quatis (RJ), com ênfase na caracterização das litofácies, ciclicidade e paleocorrentes. Rio de Janeiro.

  • Ramos, R. R. C. (2003). Sistemas aluviais terciários da Bacia de Resende, Estado do Rio de Janeiro, Brasil: análise de fácies e revisão estratigráfica. Rio de Janeiro.

  • Ramos, R. R. C., & Andreis, R. R. (1998). As Diferenças Composicionais entre os Arenitos FluviaisTerciários da Bacia de Resende (RJ) e Interpretação das Áreas de procedência dos Detritos. In: Congresso Brasileiro de Geologia, 40, 1998, Belo Horizonte. Anais. Minas Gerais: Sociedade Brasileira de Geologia (p. 71).

  • Ramos, R. R. C., Mello, C. L., & Sanson, M. D. S.R. (2005). Bacias Sedimentares Brasileiras: Bacia de Resende. Fundação Paleontológica Phoenix. Ano 7, n. 76.

  • Ramos, R. R. C., Mello, C. L., & Sanson, M. D. S. R. (2006). Revisão estratigráfica da bacia de Resende, Rift Continental do Sudeste do Brasil, Estado do Rio de Janeiro. Geociências (são Paulo), 25, 59–69.

    Google Scholar 

  • Riccomini, C. (1989). O rift continental do sudeste do Brasil. PhD thesis, Universidade de São Paulo.

  • Riccomini, C., Sant’Anna, L. G., & Ferrari, A. L. (2004). Evolução geológica do rift continental do sudeste do Brasil. In: Mantesso-Neto, V., Bartorelli, A., Carneiro, C. D. R., & Brito-Neves, B. B. (Eds.),Geologia do continente Sul-Americano: evolução da obra de Fernando Flávio Marques de Almeida, São Paulo. Editora Beca (pp. 383–405).

  • Saenz, C. A. T., et al. (2005). Thermochronology of the South American platform in the state of São Paulo, Brazil, through apatite fission tracks. Radiation Measurements, 39(6), 635–640z.

    Article  Google Scholar 

  • Salomon, E., Koehn, D., Passchier, C., Hackspacher, P. C., & Glasmacher, U. A. (2015). Contrasting stress fields on correlating margins of the South Atlantic. Gondwana Research, 28(3), 1152–1167. https://doi.org/10.1016/j.gr.2014.09.006

    Article  Google Scholar 

  • Silva, L. D., & Cunha, H. D. S. (2001). Geologia do Estado do Rio de Janeiro: texto explicativo do mapa geológico do Estado do Rio de Janeiro. Brasília: CPRM, 1–12.

  • Silva, B. Y. B. (2017). Evolução tectônica da porção central do terreno Embu ao norte da zona de CisalhamentoTaxaquara-Guararema. PhD thesis, Universidade de São Paulo.

  • Silva, A. M. S. F. M. (2018). Geofisica (gamaespectrometria) e Geocronologia (UHf) das rochas da intrusão alcalina de Morro Redondo (RJ). MsD thesis, Faculdade de Geologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro.

  • Souza, G. P., Valeriano, C. M., Ramos, R. R. C., & Barbosa, L. E. A. (2015). Comparative heavy mineral composition of alluvial fans in the Resende Basin, Southeast Brazil-preliminary results. In: 3rd Latin American Geosciences Student Conference, European Association of Geoscientists & Engineers., Nº 1, pp. 1–3.

  • Sundell, K. E., Gehrels, G. E., & Pecha, M. E. (2021). Rapid U-Pb geochronology by laser ablation multi-collector ICP-MS. Geostandards and Geoanalytical Research, 45(1), 37–57. https://doi.org/10.1111/ggr.12355

    Article  Google Scholar 

  • Thomas, W. A., Astini, R. A., Mueller, P. A., Wooden, J. L., & Gehrels, G. (2004). Transfer of the Argentine Precordillera terrane from Laurentia, constraints from detrital-zircon geochronology. Geology, 32, 965–968. https://doi.org/10.1130/G20727.1

    Article  Google Scholar 

  • Thomaz Filho, A., Mizusaki, A. M. P., Milani, E. J., & Cesero, P. (2000). Rifting and magmatism associated with South America and Africa break up. Revista Brasileira de geociências, 1, 17–19.

    Google Scholar 

  • Thompson, R. N., Gibson, S. A., Mitchell, J. G., Dickin, A. P., Leonardos, O. H., Brod, J. A., & Greenwood, J. C. (1998). Migrating Cretaceous-Eocene Magmatismin the Serra do Mar Alkaline Province, SE Brazil: Melts from the deflected Trindade mantle plume? Journal of Petrology, 39, 1493–1526. https://doi.org/10.1093/petroj/39.8.1493

    Article  Google Scholar 

  • Valladares, C. S. (1996). Evolução geológica do Complexo Paraíba do Sul, no segmento central da Faixa Ribeira, com base em estudos de geoquímica e geocronologia U-PB. PhD thesis, Universidade de São Paulo.

  • Valladares, C. S., Machado, N., Heilbron, M., Duarte, B. P., & Gauthier, G. (2008). Sedimentary provenance in the central Ribeira belt based on laser-ablation ICP-MS 207Pb/206Pb zircon ages. Gondwana Research, 13, 516–526. https://doi.org/10.1016/j.gr.2007.05.013

    Article  Google Scholar 

  • Valladares C. S., Pascutti, A. G., Silva, T. M., & Heilbron, M., et al. (2012). Geologia e recursos minerais da folha Três Rios SF. 23-ZBI. Retrieved from http://rigeo.cprm.gov.br/xmlui/handle/doc/11523

  • Valladares, C. S., Souza, S. F. M., & Ragatky, D. (2002). The Quirino Complex: A transamazonian magmatic arc (?) of the central segment of the Brasiliano/Pan-African Ribeira Belt, SE Brazil. Revista Universidade Rural, Série Ciências Exatas e da terra, 21, 49–61.

    Google Scholar 

  • Vervoort, J. D. (2014). Lu-Hf dating: The Lu-Hf isotope system. In: Encyclopedia of scientific dating methods. https://doi.org/10.1007/978-94-007-6326-5_46-1

  • Vervoort, J. D., & Blichert-Toft, J. (1999). Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochimica et cosmochimica Acta, 63(3–4), 533–556. https://doi.org/10.1016/S0016-7037(98)00274-9

    Article  Google Scholar 

  • Whitehouse, M. J., Bridgwater, D., & Park, R. G. (1997). Detrital zircon ages from the Loch Maree Group, Lewisian Complex, NW Scotland: Confirmation of a Paleoproterozoic Laurentia—Fennoscandia connection. Terra Nova, 9, 260–263.

    Article  Google Scholar 

Download references

Acknowledgements

Carlos Eduardo Sales de Oliveira would like to thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – CAPES for the research grant. MCG would like to thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq for the research grant (process # 301470/2016-2). Virginia Martins would like to thank the CNPq and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro—FAPERJ for the research grants (process #302676/2019-8 and process #202.927/2019, respectively).

Author information

Authors and Affiliations

Authors

Contributions

CESOWriting—formal analysis. WHS: Investigation (field work). ADT: Project administration, supervision. MVAM: Writing—review and editing. HC: Conceptualization. CA: Review & editing. MCG: Funding acquisition, data curation.

Corresponding author

Correspondence to Mauro Cesar Geraldes.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Communicated by L. Shao

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, C.E.S., dos Santos, W.H., Tavares, A.D. et al. Detrital zircon grains analyzed for U–Pb ages for sedimentary provenance studies: tectonic-driven deposition of the Resende Basin (Eocene–Oligocene) in Southeast Brazil. J. Sediment. Environ. 8, 175–192 (2023). https://doi.org/10.1007/s43217-023-00123-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43217-023-00123-z

Keywords

Navigation