Skip to main content

Advertisement

Log in

Role of Dydrogesterone for Luteal Phase Support in Assisted Reproduction

  • Infertility: Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Clinical outcomes of in vitro fertilization (IVF) have significantly improved over the years with the advent of the frozen–thawed embryo transfer (FET) technique. Ovarian hyperstimulation during IVF cycles causes luteal phase deficiency, a condition of insufficient progesterone. Intramuscular or vaginal progesterone and dydrogesterone are commonly used for luteal phase support in FET. Oral dydrogesterone has a higher bioavailability than progesterone and has high specificity for progesterone receptors. Though micronized vaginal progesterone has been the preferred option, recent data suggest that oral dydrogesterone might be an alternative therapeutic option for luteal phase support to improve clinical outcomes of IVF cycles. Dydrogesterone has a good safety profile and is well tolerated. Its efficacy has been evaluated in several clinical studies and demonstrated to be non-inferior to micronized vaginal progesterone in large-scale clinical trials. Oral dydrogesterone may potentially become a preferred drug for luteal phase support in millions of women undergoing IVF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of Data and Material

Not applicable as this is a review article.

Code Availability

Not applicable.

References

  1. Taraborrelli S. Physiology, production and action of progesterone. Acta Obstet Gynecol Scand. 2015;94(Suppl 161):8–16. https://doi.org/10.1111/aogs.12771.

    Article  CAS  PubMed  Google Scholar 

  2. Griesinger G, Tournaye H, Macklon N, Petraglia F, Arck P, Blockeel C, et al. Dydrogesterone: pharmacological profile and mechanism of action as luteal phase support in assisted reproduction. Reprod Biomed Online. 2019;38(2):249–59. https://doi.org/10.1016/j.rbmo.2018.11.017.

    Article  CAS  PubMed  Google Scholar 

  3. Carp HJA. Progestogens and pregnancy loss. Climacteric. 2018;21(4):380–4. https://doi.org/10.1080/13697137.2018.1436166.

    Article  CAS  PubMed  Google Scholar 

  4. Csapo AI, Pulkkinen M. Indispensability of the human corpus luteum in the maintenance of early pregnancy. Luteectomy evidence Obstet Gynecol Surv. 1978;33(2):69–81. https://doi.org/10.1097/00006254-197802000-00001.

    Article  CAS  PubMed  Google Scholar 

  5. Kolibianakis EM, Bourgain C, Platteau P, Albano C, Van Steirteghem AC, Devroey P. Abnormal endometrial development occurs during the luteal phase of nonsupplemented donor cycles treated with recombinant follicle-stimulating hormone and gonadotropin-releasing hormone antagonists. Fertil Steril. 2003;80(2):464–6. https://doi.org/10.1016/s0015-0282(03)00663-0.

    Article  PubMed  Google Scholar 

  6. The Practice Committee of the American Society for Reproductive Medicine. The clinical relevance of luteal phase deficiency: a committee opinion. Fertil Steril. 2012;98(5):1112–7. https://doi.org/10.1016/j.fertnstert.2012.06.050.

  7. van der Linden M, Buckingham K, Farquhar C, Kremer JA, Metwally M. 2015 Luteal phase support for assisted reproduction cycles. Cochrane Database Syst Rev. 2015;7:CD009154. https://doi.org/10.1002/14651858.CD009154.pub3.

    Article  Google Scholar 

  8. The Practice Committee of the American Society for Reproductive Medicine. Progesterone supplementation during the luteal phase and in early pregnancy in the treatment of infertility: an educational bulletin. Fertil Steril. 2008;89(4):789–92. https://doi.org/10.1016/j.fertnstert.2008.02.012

  9. Griesinger G, Blockeel C, Tournaye H. Oral dydrogesterone for luteal phase support in fresh in vitro fertilization cycles: a new standard? Fertil Steril. 2018;109(5):756–62. https://doi.org/10.1016/j.fertnstert.2018.03.034.

    Article  CAS  PubMed  Google Scholar 

  10. Tournaye H, Sukhikh GT, Kahler E, Griesinger G. A Phase III randomized controlled trial comparing the efficacy, safety and tolerability of oral dydrogesterone versus micronized vaginal progesterone for luteal support in in vitro fertilization. Hum Reprod. 2017;32(10):2152. https://doi.org/10.1093/humrep/dex266.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Griesinger G, Blockeel C, Sukhikh GT, Patki A, Dhorepatil B, Yang DZ, et al. Oral dydrogesterone versus intravaginal micronized progesterone gel for luteal phase support in IVF: a randomized clinical trial. Hum Reprod. 2018;33(12):2212–21. https://doi.org/10.1093/humrep/dey306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chakravarty BN, Shirazee HH, Dam P, Goswami SK, Chatterjee R, Ghosh S. Oral dydrogesterone versus intravaginal micronised progesterone as luteal phase support in assisted reproductive technology (ART) cycles: results of a randomised study. J Steroid Biochem Mol Biol. 2005;97(5):416–20. https://doi.org/10.1016/j.jsbmb.2005.08.012.

    Article  CAS  PubMed  Google Scholar 

  13. Groenewoud ER, Cantineau AE, Kollen BJ, Macklon NS, Cohlen BJ. What is the optimal means of preparing the endometrium in frozen-thawed embryo transfer cycles? A systematic review and meta-analysis. Hum Reprod Update. 2013;19(5):458–70. https://doi.org/10.1093/humupd/dmt030.

    Article  PubMed  Google Scholar 

  14. RezazadehValojerdi M, Eftekhari-Yazdi P, Karimian L, Hassani F, Movaghar B. Vitrification versus slow freezing gives excellent survival, post warming embryo morphology and pregnancy outcomes for human cleaved embryos. J Assist Reprod Genet. 2009;26(6):347–54. https://doi.org/10.1007/s10815-009-9318-6.

    Article  Google Scholar 

  15. Noble M, Child T. The role of frozen–thawed embryo replacement cyclesin assisted conception. Obstet Gynaecol. 2020;22:57–68. https://doi.org/10.1111/tog.12630.

    Article  Google Scholar 

  16. Fauser BC, Devroey P. Reproductive biology and IVF: ovarian stimulation and luteal phase consequences. Trends Endocrinol Metab. 2003;14(5):236–42. https://doi.org/10.1016/s1043-2760(03)00075-4.

    Article  CAS  PubMed  Google Scholar 

  17. Palomba S, Santagni S, La Sala GB. Progesterone administration for luteal phase deficiency in human reproduction: an old or new issue? J Ovarian Res. 2015;8:77. https://doi.org/10.1186/s13048-015-0205-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chau LTM, Tu DK, Lehert P, Dung DV, Thanh LQ, Tuan VM. Clinical pregnancy following GnRH agonist administration in the luteal phase of fresh or frozen assisted reproductive technology (ART) cycles: Systematic review and meta-analysis. Eur J Obstet Gynecol Reprod Biol X. 2019;3:100046. https://doi.org/10.1016/j.eurox.2019.100046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stimpfel M, Vrtacnik-Bokal E, Pozlep B, Virant-Klun I. Comparison of GnRH agonist, GnRH antagonist, and GnRH antagonist mild protocol of controlled ovarian hyperstimulation in good prognosis patients. Int J Endocrinol. 2015;2015:385049. https://doi.org/10.1155/2015/385049.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yding Andersen C, Vilbour AK. Improving the luteal phase after ovarian stimulation: reviewing new options. Reprod Biomed Online. 2014;28(5):552–9. https://doi.org/10.1016/j.rbmo.2014.01.012.

    Article  CAS  PubMed  Google Scholar 

  21. Banker M, Garcia-Velasco JA. Revisiting ovarian hyper stimulation syndrome: Towards OHSS free clinic. J Hum Reprod Sci. 2015;8(1):13–7. https://doi.org/10.4103/0974-1208.153120.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Scott R, Navot D, Liu HC, Rosenwaks Z. A human in vivo model for the luteoplacental shift. Fertil Steril. 1991;56(3):481–4. https://doi.org/10.1016/s0015-0282(16)54544-0.

    Article  CAS  PubMed  Google Scholar 

  23. Mackens S, Santos-Ribeiro S, van de Vijver A, Racca A, Van Landuyt L, Tournaye H, et al. Frozen embryo transfer: a review on the optimal endometrial preparation and timing. Hum Reprod. 2017;32(11):2234–42. https://doi.org/10.1093/humrep/dex285.

    Article  CAS  PubMed  Google Scholar 

  24. Kawachiya S, Bodri D, Hirosawa T, Yao Serna J, Kuwahara A, Irahara M. Endogenous progesterone levels could predict reproductive outcome in frozen embryo replacement cycles supplemented with synthetic progestogens: A retrospective cohort study. Reprod Med Biol. 2019;18(1):91–6. https://doi.org/10.1002/rmb2.12254.

    Article  CAS  PubMed  Google Scholar 

  25. Yang R, Chi H, Chen L, Li R, Liu P, Qiao J. Impact of different luteal support methods on clinical outcomes of frozen-thawed embryo transfer cycles. Zhonghua Yi Xue Za Zhi. 2014;94(41):3256–8.

    PubMed  Google Scholar 

  26. Guo W, Chen X, Ye D, He Y, Li P, Niu J, et al. Effects of oral dydrogesterone on clinical outcomes of frozen-thawed embryo transfer cycles. Nan Fang Yi Ke Da Xue Xue Bao. 2013;33(6):861–5.

    PubMed  Google Scholar 

  27. Zarei A, Sohail P, Parsanezhad ME, Alborzi S, Samsami A, Azizi M. Comparison of four protocols for luteal phase support in frozen-thawed Embryo transfer cycles: a randomized clinical trial. Arch Gynecol Obstet. 2017;295(1):239–46. https://doi.org/10.1007/s00404-016-4217-4.

    Article  PubMed  Google Scholar 

  28. Liu XR, Mu HQ, Shi Q, Xiao XQ, Qi HB. The optimal duration of progesterone supplementation in pregnant women after IVF/ICSI: a meta-analysis. Reprod Biol Endocrinol. 2012;10:107. https://doi.org/10.1186/1477-7827-10-107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. The Practice Committee of the Society for Assisted Reproductive Technology, Practice Committee of the American Society for Reproductive Medicine. Guidelines on number of embryos transferred. Fertil Steril. 2008;90(5 Suppl):S163–4. https://doi.org/10.1016/j.fertnstert.2008.08.053.

  30. National Collaborating Centre for Women’s and Children’s Health (UK). Fertility: Assessment and Treatment for People with Fertility Problems. London (UK): RCOG Press. 2004.

  31. van der Linden M, Buckingham K, Farquhar C, Kremer JA, Metwally M. Luteal phase support for assisted reproduction cycles. Cochrane Database Syst Rev. 2011;10:CD009154. https://doi.org/10.1002/14651858.CD009154.pub2.

    Article  Google Scholar 

  32. Stimulation EGGOO, Bosch E, Broer S, Griesinger G, Grynberg M, Humaidan P, et al. Erratum: ESHRE guideline: ovarian stimulation for IVF/ICSI. Hum Reprod Open. 2020;2020(4):hoaa067. https://doi.org/10.1093/hropen/hoaa067.

    Article  Google Scholar 

  33. Barbosa MW, Silva LR, Navarro PA, Ferriani RA, Nastri CO, Martins WP. Dydrogesterone vs progesterone for luteal-phase support: systematic review and meta-analysis of randomized controlled trials. Ultrasound Obstet Gynecol. 2016;48(2):161–70. https://doi.org/10.1002/uog.15814.

    Article  CAS  PubMed  Google Scholar 

  34. Chakravarty BN, Dam P, Goswami SK, Ghosh S, Chattopadhyay R. Oral dydrogesterone versus vaginal micronised progesterone as luteal phase support in ART cycles–evaluation based on correction of hormone profile and clinical outcome. Human Reprod. 2005;20(suppl_1):i133–41.

    Google Scholar 

  35. Patki A, Pawar VC. Modulating fertility outcome in assisted reproductive technologies by the use of dydrogesterone. Gynecol Endocrinol. 2007;23(Suppl 1):68–72. https://doi.org/10.1080/09513590701584857.

    Article  CAS  PubMed  Google Scholar 

  36. Ganesh A, Chakravorty N, Mukherjee R, Goswami S, Chaudhury K, Chakravarty B. Comparison of oral dydrogestrone with progesterone gel and micronized progesterone for luteal support in 1,373 women undergoing in vitro fertilization: a randomized clinical study. Fertil Steril. 2011;95(6):1961–5. https://doi.org/10.1016/j.fertnstert.2011.01.148.

    Article  CAS  PubMed  Google Scholar 

  37. Saharkhiz N, Zamaniyan M, Salehpour S, Zadehmodarres S, Hoseini S, Cheraghi L, et al. A comparative study of dydrogesterone and micronized progesterone for luteal phase support during in vitro fertilization (IVF) cycles. Gynecol Endocrinol. 2016;32(3):213–7. https://doi.org/10.3109/09513590.2015.1110136.

    Article  CAS  PubMed  Google Scholar 

  38. Salehpour S, Tamimi M, Saharkhiz N. Comparison of oral dydrogesterone with suppository vaginal progesterone for luteal-phase support in in vitro fertilization (IVF): A randomized clinical trial. Iran J Reprod Med. 2013;11(11):913–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Tomic V, Tomic J, Klaic DZ, Kasum M, Kuna K. Oral dydrogesterone versus vaginal progesterone gel in the luteal phase support: randomized controlled trial. Eur J Obstet Gynecol Reprod Biol. 2015;186:49–53. https://doi.org/10.1016/j.ejogrb.2014.11.002.

    Article  CAS  PubMed  Google Scholar 

  40. Pabuçcu E, Pabuçcu R, Gürgan T, Tavmergen E. Luteal phase support in fresh and frozen embryo transfer cycles. J Gynecol Obstet Hum Reprod. 2020;49(10):101838. https://doi.org/10.1016/j.jogoh.2020.101838.

  41. Wei D, Liu JY, Sun Y, Shi Y, Zhang B, Liu JQ, et al. Frozen versus fresh single blastocyst transfer in ovulatory women: a multicentre, randomised controlled trial. Lancet. 2019;393(10178):1310–8. https://doi.org/10.1016/S0140-6736(18)32843-5.

    Article  PubMed  Google Scholar 

  42. Pabuccu E, Kovanci E, Israfilova G, Tulek F, Demirel C, Pabuccu R. Oral, vaginal or intramuscular progesterone in programmed frozen embryo transfer cycles: a pilot randomized controlled trial. Reprod Biomed Online. 2022;45(6):1145–51. https://doi.org/10.1016/j.rbmo.2022.06.027.

    Article  CAS  PubMed  Google Scholar 

  43. Massin N, Pietin-Vialle C, Pasquier M, Heluin G, Haddad B, Bry-Gauillard H. How to implement in real-life settings the results of meta analysis? Example of dydrogesterone as luteal phase support after fresh embryo transfer in IVF procedure. Hum Reprod. 2016;31(suppl_1):i447. https://doi.org/10.1093/humrep/31.Supplement_1.1.

  44. Rashidi BH, Gorginzadeh M, Aalipour S, Sills ES. Age related endocrine patterns observed in polycystic ovary syndrome patients vs. ovulatory controls: descriptive data from a university based infertility center. Arch Endocrinol Metab. 2016;60(5):486–91. https://doi.org/10.1590/2359-3997000000215.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Atzmon Y, Aslih N, Estrada D, Bilgory A, Ellenbogen A, Shalom-Paz E. Comparable Outcomes Using Oral Dydrogesterone Vs. Micronized Vaginal Progesterone in Frozen Embryo Transfer: a Retrospective Cohort Study. Reprod Sci. 2021;28(7):1874–81. https://doi.org/10.1007/s43032-020-00376-3.

    Article  CAS  PubMed  Google Scholar 

  46. Ozer G, Yuksel B, YucelCicek OS, Kahraman S. Oral dydrogesterone vs. micronized vaginal progesterone gel for luteal phase support in frozen-thawed single blastocyst transfer in good prognosis patients. J Gynecol Obstet Hum Reprod. 2021;50(5):102030. https://doi.org/10.1016/j.jogoh.2020.102030.

    Article  PubMed  Google Scholar 

  47. Patki A, Pai H, Shah D, Malik S, Rao K. Evaluating the role of oral dydrogesterone for luteal-phase support in women undergoing frozen embryo transfer: Systematic review with meta-analysis. J Fertil In vitro IVF Worldw Reprod Med Genet Stem Cell Biol. 2023;11:295.

    Google Scholar 

  48. Vuong LN, Pham TD, Le KTQ, Ly TT, Le HL, Nguyen DTN, et al. Micronized progesterone plus dydrogesterone versus micronized progesterone alone for luteal phase support in frozen-thawed cycles (MIDRONE): a prospective cohort study. Hum Reprod. 2021;36(7):1821–31. https://doi.org/10.1093/humrep/deab093.

    Article  CAS  PubMed  Google Scholar 

  49. Xu H, Zhang XQ, Zhu XL, Weng HN, Xu LQ, Huang L, et al. Comparison of vaginal progesterone gel combined with oral dydrogesterone versus intramuscular progesterone for luteal support in hormone replacement therapy-frozen embryo transfer cycle. J Gynecol Obstet Hum Reprod. 2021;50(7):102110. https://doi.org/10.1016/j.jogoh.2021.102110.

    Article  PubMed  Google Scholar 

  50. Vidal A, Dhakal C, Werth N, Weiss JM, Lehnick D, Schwartz ASK. Supplementary dydrogesterone is beneficial as luteal phase support in artificial frozen-thawed embryo transfer cycles compared to micronized progesterone alone. Front Endocrinol (Lausanne). 2023;13(14):1128564. https://doi.org/10.3389/fendo.2023.1128564.

    Article  Google Scholar 

  51. Stanczyk FZ, Hapgood JP, Winer S, Mishell DR Jr. Progestogens used in postmenopausal hormone therapy: differences in their pharmacological properties, intracellular actions, and clinical effects. Endocr Rev. 2013;34(2):171–208. https://doi.org/10.1210/er.2012-1008.

    Article  CAS  PubMed  Google Scholar 

  52. Paulson RJ, Collins MG, Yankov VI. Progesterone pharmacokinetics and pharmacodynamics with 3 dosages and 2 regimens of an effervescent micronized progesterone vaginal insert. J Clin Endocrinol Metab. 2014;99(11):4241–9. https://doi.org/10.1210/jc.2013-3937.

    Article  CAS  PubMed  Google Scholar 

  53. Schindler AE, Campagnoli C, Druckmann R, Huber J, Pasqualini JR, Schweppe KW, et al. Classification and pharmacology of progestins. Maturitas. 2003;46(Suppl 1):S7–16. https://doi.org/10.1016/j.maturitas.2003.09.014.

    Article  CAS  PubMed  Google Scholar 

  54. Daughton CG, Ruhoy IS. Lower-dose prescribing: minimizing “side effects” of pharmaceuticals on society and the environment. Sci Total Environ. 2013;443:324–37. https://doi.org/10.1016/j.scitotenv.2012.10.092.

    Article  CAS  PubMed  Google Scholar 

  55. Ghabril M, Chalasani N, Bjornsson E. Drug-induced liver injury: a clinical update. Curr Opin Gastroenterol. 2010;26(3):222–6. https://doi.org/10.1097/MOG.0b013e3283383c7c.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kuhl H. Pharmacology of estrogens and progestogens: influence of different routes of administration. Climacteric. 2005;8(Suppl 1):3–63. https://doi.org/10.1080/13697130500148875.

    Article  CAS  PubMed  Google Scholar 

  57. Rizner TL, Brozic P, Doucette C, Turek-Etienne T, Muller-Vieira U, Sonneveld E, et al. Selectivity and potency of the retroprogesterone dydrogesterone in vitro. Steroids. 2011;76(6):607–15. https://doi.org/10.1016/j.steroids.2011.02.043.

    Article  CAS  PubMed  Google Scholar 

  58. Raghupathy R, Szekeres-Bartho J. Progesterone: a unique hormone with immunomodulatory roles in pregnancy. Int J Mol Sci. 2022;23(3):1333. https://doi.org/10.3390/ijms23031333

  59. Netter A, Mancini J, Buffat C, Agostini A, Perrin J, Courbiere B. Do early luteal serum progesterone levels predict the reproductive outcomes in IVF with oral dydrogesterone for luteal phase support? PLoS One. 2019;14(7):e0220450. https://doi.org/10.1371/journal.pone.0220450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. El-Zibdeh MY, Yousef LT. Dydrogesterone support in threatened miscarriage. Maturitas. 2009;65(Suppl 1):S43–6. https://doi.org/10.1016/j.maturitas.2009.11.013.

    Article  CAS  PubMed  Google Scholar 

  61. Pandian RU. Dydrogesterone in threatened miscarriage: a Malaysian experience. Maturitas. 2009;65(Suppl 1):S47-50. https://doi.org/10.1016/j.maturitas.2009.11.016.

    Article  CAS  PubMed  Google Scholar 

  62. Ehrenskjold ML, Bondo B, Weile F. Treatment of threatened abortion with dydrogesterone. Ugeskr Laeger. 1967;129(50):1678–9.

    CAS  PubMed  Google Scholar 

  63. Misto A. Experiences with 6-dehydro-retroprogesterone int the treatment of placental insufficiency. Ann Ostet Ginecol Med Perinat. 1967;89(2):102–12.

    CAS  PubMed  Google Scholar 

  64. Vincze E, Molnár B, Földesi I, Pál A. Treatment possibilities for threatened abortion using progesterone and progesterone-type drugs. Magyar Noorvosok Lapja. 2006;69:281–4.

    Google Scholar 

  65. El-Zibdeh MY. Dydrogesterone in the reduction of recurrent spontaneous abortion. J Steroid Biochem Mol Biol. 2005;97(5):431–4. https://doi.org/10.1016/j.jsbmb.2005.08.007.

    Article  CAS  PubMed  Google Scholar 

  66. Zaqout M, Aslem E, Abuqamar M, Abughazza O, Panzer J, De Wolf D. The Impact of Oral Intake of Dydrogesterone on Fetal Heart Development During Early Pregnancy. Pediatr Cardiol. 2015;36(7):1483–8. https://doi.org/10.1007/s00246-015-1190-9.

    Article  PubMed  Google Scholar 

  67. Koren G, Gilboa D, Katz R. Expression of Concern to: Fetal Safety of Dydrogesterone Exposure in the First Trimester of Pregnancy. Clin Drug Investig. 2020;40(7):681. https://doi.org/10.1007/s40261-019-00884-4.

    Article  PubMed  Google Scholar 

  68. Katalinic A, Shulman LP, Strauss JF, Garcia-Velasco JA, van den Anker JN. A critical appraisal of safety data on dydrogesterone for the support of early pregnancy: a scoping review and meta-analysis. Reprod Biomed Online. 2022;45(2):365–73. https://doi.org/10.1016/j.rbmo.2022.03.032.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks Leena Patel from CBCC Global research for medical writing assistance in development of this review article. Financial assistance for medical writing was provided by Abbott India Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ameet Patki.

Ethics declarations

Ethics Approval

Not applicable as this is a review article.

Consent to Participate

Not applicable as this is a review article.

Consent for Publication

Not applicable as this is a review article.

Conflict of Interest

The author has received speaker fees and honoraria for educational events from Cipla, Abbott and MSD and travel support for meeting attendance from Abbott.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patki, A. Role of Dydrogesterone for Luteal Phase Support in Assisted Reproduction. Reprod. Sci. 31, 17–29 (2024). https://doi.org/10.1007/s43032-023-01302-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-023-01302-z

Keywords

Navigation