Skip to main content

Advertisement

Log in

The Role of Ferroptosis in Placental-Related Diseases

  • Pregnancy: Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Ferroptosis is a recently identified form of programmed cell death which is different from apoptosis, pyroptosis, necrosis, and autophagy. It is uniquely defined by redox-active iron-dependent hydroxy-peroxidation of polyunsaturated fatty acid (PUFA)-containing phospholipids and a loss of lipid peroxidation repair capacity. Ferroptosis has recently been implicated in multiple human diseases, such as tumors, ischemia–reperfusion injury, acute kidney injury, neurological diseases, and asthma among others. Intriguingly, ferroptosis is associated with placental physiology and trophoblast injury. Circumstances such as accumulation of lipid reactive oxygen species (ROS) due to hypoxia-reperfusion and anoxia-reoxygenation of trophoblast during placental development, the abundance of trophoblastic iron and PUFA, physiological uterine contractions, or pathological placental bed perfusion, cause placental trophoblasts’ susceptibility to ferroptosis. Ferroptosis of trophoblast can cause placental dysfunction, which may be involved in the occurrence and development of placenta-related diseases such as gestational diabetes mellitus, preeclampsia, fetal growth restriction, preterm birth, and abortion. The regulatory mechanisms of trophoblastic ferroptosis still need to be explored further. Here, we summarize the latest progress in trophoblastic ferroptosis research on placental-related diseases, provide references for further understanding of its pathogenesis, and propose new strategies for the prevention and treatment of placental-related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

The datasets generated and or analysed during the current study are available online. No consent was required as the study used data that has already been published online.

Abbreviations

ACSL4 :

Acyl-CoA synthetase long-chain family member 4

AMPK:

Activated protein kinase

BAP1 :

BRCA1-associated protein 1

BECN1 :

Beclin 1

BM :

Basal membrane

BMI :

Body mass index

CTB :

Cytotrophoblasts

CoQ10 :

Coenzyme Q10

DMT1 :

Divalent metal transporter 1

Fe 2+ :

Ferrous iron

Fe 3+ :

Ferric iron

FGR :

Fetal growth restriction

FPN1 :

Ferroportin 1

FSP1 :

Ferroptosis suppressor protein 1

GDM :

Gestational diabetes mellitus

GPX4 :

Glutathione peroxidase 4

GPXs :

Glutathione peroxidases

GSH :

Glutathione

HbA1c :

Hemoglobin A1c

H2O2 :

Hydrogen peroxide

IREB2 :

Iron response element binding protein 2

IRP1/2 :

Iron regulatory protein 1/2

LIP :

Labile iron pool

LOXs :

Lipoxygenases

LPCAT3 :

Lysophosphatidylcholine acyltransferase 3

MVM :

Microvillous plasma membrane

NAD(P) :

Nicotinamide adenine dinucleotide phosphate

OGTT :

Oral glucose tolerance test

PCBP2 :

Poly(rC)-binding protein 2

PCD :

Programmed cell death

PCOS :

Polycystic ovary syndrome

PLA2G6 :

Phospholipase A2 group VI

PE :

Preeclampsia

PLOOHs :

Phospholipid hydroperoxides

PUFAs :

Polyunsaturated fatty acids

PUFA-PLs :

PUFA-containing phospholipids

ROS :

Reactive oxygen species

RSL3 :

RAS-selective lethal 3

SIRT3 :

Sirtuin 3

SLC7A11 :

Solute carrier family 7 member 11

SLC3A2 :

Solute carrier family 3 member 2

STB :

Syncytiotrophoblast

STEAP3/4 :

Six-transmembrane epithelial antigen of the prostate 3/4

TB :

Trophoblasts

Tf :

Transferrin

TFR1 :

Transferrin receptor 1

VDACs :

Voltage-dependent anion channels

WHO :

World Health Organization

ZIP 8/14 :

Zinc-iron regulatory protein family 8/14

References

  1. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  CAS  PubMed  Google Scholar 

  2. Galluzzi L, Vitale I, Aaronson SA, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018;25(3):486–541.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Dolma S, Lessnick SL, Hahn WC, Stockwell BR. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell. 2003;3(3):285–96.

    Article  CAS  PubMed  Google Scholar 

  4. Yagoda N, von Rechenberg M, Zaganjor E, et al. RAS–RAF–MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature. 2007;447(7146):865–9.

    Article  CAS  Google Scholar 

  5. Yang WS, Stockwell BR. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem Biol. 2008;15(3):234–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149(5):1060–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stockwell BR, Friedmann Angeli JP, Bayir H, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 2017;171(2):273–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kagan VE, Mao G, Qu F, et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol. 2017;13(1):81–90.

    Article  CAS  PubMed  Google Scholar 

  9. Xie Y, Hou W, Song X, et al. Ferroptosis: process and function. Cell Death Differ. 2016;23(3):369–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tang D, Chen X, Kang R, et al. Ferroptosis: molecular mechanisms and health implications. Cell Res. 2021;31(2):107–25.

    Article  CAS  PubMed  Google Scholar 

  11. Li S, Huang Y. Ferroptosis: an iron-dependent cell death form linking metabolism, diseases, immune cell and targeted therapy. Clinical Transl Oncol. 2022; 24(1):1–12.

  12. Gao M, Monian P, Pan Q, et al. Ferroptosis is an autophagic cell death process. Cell Res. 2016;26(9):1021–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li J, Cao F, Yin H, et al. Ferroptosis: past, present and future. Cell Death Dis. 2020;11(2):1–13.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 2021;22(4):266–82.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sibley CP. Treating the dysfunctional placenta. J Endocrinol. 2017;234(2):R81–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Burton GJ, Redman CW, Roberts JM, Moffett A. Pre-eclampsia: pathophysiology and clinical implications. BMJ. 2019; 366:I2381.

  17. Ng SW, Norwitz SG, Taylor HS, Norwitz ER. Endometriosis: the role of iron overload and ferroptosis. Reprod Sci. 2020;27:1383–90.

    Article  CAS  PubMed  Google Scholar 

  18. Aplin JD, Myers JE, Timms K, et al. Tracking placental development in health and disease. Nat Rev Endocrinol. 2020;16:479–94.

    Article  CAS  PubMed  Google Scholar 

  19. Beharier O, Tyurin VA, Goff JP, et al. PLA2G6 guards placental trophoblasts against ferroptotic injury. Proc Natl Acad Sci. 2020;117(44):27319–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Beharier O, Kajiwara K, Sadovsky Y. Ferroptosis, trophoblast lipotoxic damage, and adverse pregnancy outcome. Placenta. 2021;108:32–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang H, He Y, Wang J, et al. miR-30-5p-mediated ferroptosis of trophoblasts is implicated in the pathogenesis of preeclampsia. Redox Biol. 2020;29:101402.

    Article  CAS  PubMed  Google Scholar 

  22. Dixon SJ, Stockwell BR. The hallmarks of ferroptosis. Annu Rev Cancer Biol. 2019;3(3):35–54.

    Article  Google Scholar 

  23. Bersuker K, Hendricks JM, Li Z, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature. 2019;575(7784):688–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. World Health Organization. Guideline: daily iron and folic acid supplementation in pregnant women. World Health Organization. 2012.

  25. Schneider H, Miller RK. Receptor-mediated uptake and transport of macromolecules in the human placenta. Int J Dev Biol. 2009;54(2–3):367–75.

    Google Scholar 

  26. Cao C, Fleming MD. The placenta: the forgotten essential organ of iron transport. Nutr Rev. 2016;74(7):421–31.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Veuthey T, Wessling-Resnick M. Pathophysiology of the Belgrade rat. Front Pharmacol. 2014;5:82.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Jenkitkasemwong S, Wang CY, Mackenzie B, et al. Physiologic implications of metal-ion transport by ZIP14 and ZIP8. Biometals. 2012;25(4):643–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhao N, Gao J, Enns CA, et al. ZRT/IRT-like protein 14 (ZIP14) promotes the cellular assimilation of iron from transferrin. J Biol Chem. 2010;285(42):32141–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zaugg J, Solenthaler F, Albrecht C. Materno-fetal iron transfer and the emerging role of ferroptosis pathways. Biochem Pharmacol. 2022; 202:115141.

  31. Yanatori I, Richardson DR, Imada K, et al. Iron export through the transporter ferroportin 1 is modulated by the iron chaperone PCBP2. J Biol Chem. 2016;291(33):17303–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Feng H, Schorpp K, Jin J, et al. Transferrin receptor is a specific ferroptosis marker. Cell Rep. 2020;30(10):3411-3423.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sangkhae V, Nemeth E. Placental iron transport: the mechanism and regulatory circuits. Free Radical Biol Med. 2019;133:254–61.

    Article  CAS  Google Scholar 

  34. Li YQ, Bai B, Cao XX, et al. Divalent metal transporter 1 expression and regulation in human placenta. Biol Trace Elem Res. 2012;146(1):6–12.

    Article  CAS  PubMed  Google Scholar 

  35. Bradley J, Leibold EA, Harris ZL, et al. Influence of gestational age and fetal iron status on IRP activity and iron transporter protein expression in third-trimester human placenta. Am J Physiol-Regul, Integr Comp Physiol. 2004;287(4):R894–901.

    Article  CAS  PubMed  Google Scholar 

  36. Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol. 2020;21(7):363–83.

    Article  CAS  PubMed  Google Scholar 

  37. Burton GJ, Cindrova-Davies T, Yung wang H, et al. Hypoxia and reproductive health: oxygen and development of the human placenta. Reprod. 2021;161(1):F53–65.

    Article  CAS  Google Scholar 

  38. Aouache R, Biquard L, Vaiman D, et al. Oxidative stress in preeclampsia and placental diseases. Int J Mol Sci. 2018;19(5):1496.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Yang WS, Stockwell BR. Ferroptosis: death by lipid peroxidation. Trends Cell Biol. 2016;26(3):165–76.

    Article  CAS  PubMed  Google Scholar 

  40. Doll S, Proneth B, Tyurina YY, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol. 2017;13(1):91–8.

    Article  CAS  PubMed  Google Scholar 

  41. Forcina GC, Dixon SJ. GPX4 at the crossroads of lipid homeostasis and ferroptosis. Proteomics. 2019;19(18):1800311.

    Article  Google Scholar 

  42. Ursini F, Maiorino M. Lipid peroxidation and ferroptosis: the role of GSH and GPx4. Free Radical Biol Med. 2020;152:175–85.

    Article  CAS  Google Scholar 

  43. Yang Y, Luo M, Zhang K, Zhang J, Gao T, Connell DO, Yao F, Mu C, Cai B, Shang Y, Chen W. Nat Commun. 2020;11(1):433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yang WS, SriRamaratnam R, Welsch ME, et al. Regulation of ferroptotic cancer cell death by GPX4. Cell. 2014;156(1–2):317–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Doll S, Freitas FP, Shah R, et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 2019;575(7784):693–8.

    Article  CAS  PubMed  Google Scholar 

  46. Jiang L, Kon N, Li T, et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature. 2015;520(7545):57–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kim MJ, Yun GJ, Kim SE. Metabolic regulation of ferroptosis in cancer. Biol. 2021;10(2):83.

    Article  CAS  Google Scholar 

  48. Kajiwara K, Beharier O, Chng C P, et al. Ferroptosis induces membrane blebbing in placental trophoblasts. J Cell Science. 2022;135(5):jcs255737.

  49. Pathirana MM, Lassi ZS, Ali A, et al. Association between metabolic syndrome and gestational diabetes mellitus in women and their children: a systematic review and meta-analysis. Endocr. 2021;71(2):310–20.

    Article  CAS  Google Scholar 

  50. Zaugg J, Melhem H, Huang X, et al. Gestational diabetes mellitus affects placental iron homeostasis: mechanism and clinical implications. FASEB J. 2020;34(6):7311–29.

    Article  CAS  PubMed  Google Scholar 

  51. Yan P, Wang Y, Yu X, et al. Maternal diabetes and risk of childhood malignancies in the offspring: a systematic review and meta-analysis of observational studies. Acta Diabetol. 2021;58(2):153–68.

    Article  PubMed  Google Scholar 

  52. Hernandez TL, Brand-Miller JC. Nutrition therapy in gestational diabetes mellitus: time to move forward. Diabetes Care. 2018;41(7):1343–5.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Peng HY, Li MQ, Li HP. High glucose suppresses the viability and proliferation of HTR-8/SVneo cells through regulation of the miR-137/PRKAA1/IL-6 axis. Int J Mol Med. 2018;42(2):799–810.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Rawal S, Hinkle SN, Bao W, et al. A longitudinal study of iron status during pregnancy and the risk of gestational diabetes: findings from a prospective, multiracial cohort. Diabetol. 2017;60(2):249–57.

    Article  CAS  Google Scholar 

  55. Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists’ task force on hypertension in pregnancy. Obstet Gynecol. 2013;122(5):1122–1131.

  56. Guerby P, Tasta O, Swiader A, et al. Role of oxidative stress in the dysfunction of the placental endothelial nitric oxide synthase in preeclampsia. Redox Biol. 2021;40:101861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zheng Y, Hu Q. Adiponectin ameliorates placental injury in gestational diabetes mice by correcting fatty acid oxidation/peroxide imbalance-induced ferroptosis via restoration of CPT-1 activity. Endocr. 2022;75(3):781–93.

    Article  CAS  Google Scholar 

  58. Drakesmith H. Prentice A M. Hepcidin Iron-Infect Axis Sci. 2012;338(6108):768–72.

    CAS  Google Scholar 

  59. Yang N, Wang Q, Ding B, et al. Expression profiles and functions of ferroptosis-related genes in the placental tissue samples of early-and late-onset preeclampsia patients. BMC Pregnancy Childbirth. 2022;22(1):1–11.

    CAS  Google Scholar 

  60. Liu JX, Chen D, Li MX, et al. Increased serum iron levels in pregnant women with preeclampsia: a meta-analysis of observational studies. J Obstet Gynaecol. 2019;39(1):11–6.

    Article  CAS  PubMed  Google Scholar 

  61. Erlandsson L, Masoumi Z, Hansson LR, et al. The roles of free iron, heme, haemoglobin, and the scavenger proteins haemopexin and alpha-1-microglobulin in preeclampsia and fetal growth restriction. J Intern Med. 2021;290(5):952–68.

    Article  CAS  PubMed  Google Scholar 

  62. Shaji Geetha N, Bobby Z, Dorairajan G, et al. Increased hepcidin levels in preeclampsia: a protective mechanism against iron overload mediated oxidative stress? J Matern Fetal Neonatal Med. 2022;35(4):636–41.

    Article  CAS  PubMed  Google Scholar 

  63. Mishra J, Srivastava SK, Pandey KB. Compromised renal and hepatic functions and unsteady cellular redox state during preeclampsia and gestational diabetes mellitus. Arch Med Res. 2021;52(6):635–40.

    Article  CAS  PubMed  Google Scholar 

  64. Roland-Zejly L, Moisan V, St-Pierre I, et al. Altered placental glutathione peroxidase mRNA expression in preeclampsia according to the presence or absence of labor. Placenta. 2011;32(2):161–7.

    Article  CAS  PubMed  Google Scholar 

  65. Walani SR. Global burden of preterm birth. Int J Gynecol Obstet. 2020;150(1):31–3.

    Article  Google Scholar 

  66. Moore TA, Ahmad IM, Zimmerman MC. Oxidative stress and preterm birth: an integrative review. Biol Res Nurs. 2018;20(5):497–512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dewey KG, Oaks BM. U-shaped curve for risk associated with maternal hemoglobin, iron status, or iron supplementation. Am J Clin Nutr. 2017;106(suppl_6):1694S-1702S.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Moradinazar M, Najafi F, Nazar ZM, Hamzeh B, Pasdar Y, Shakiba E. Lifetime prevalence of abortion and risk factors in women: evidence from a cohort study. J Pregnancy. 2020;2020:4871494.

  69. Bai RX, Tang ZY. Long non-coding RNA H19 regulates Bcl-2, Bax and phospholipid hydroperoxide glutathione peroxidase expression in spontaneous abortion. Exp Ther Med. 2021;21(1):1–1.

    CAS  Google Scholar 

  70. Zhang Y, Hu M, Jia W, Liu G, Zhang J, Wang B, Li J, Cui P, Li X, Lager S, Sferruzzi-Perri AN, Han Y, Liu S, Wu X, Br annstrom M, Shao LR, Billig H. Hyperandrogenism and insulin resistance modulate gravid uterine and placental ferroptosis in PCOS-like rats. J Endocrinol. 2020;246(3):247–63.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Yu.

Ethics declarations

Informed Consent Statement.

Not applicable.

Competing Interests

The authors declare no competing interests.

Institutional Review Board Statement.

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, X., Obore, N., Wang, Y. et al. The Role of Ferroptosis in Placental-Related Diseases. Reprod. Sci. 30, 2079–2086 (2023). https://doi.org/10.1007/s43032-023-01193-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-023-01193-0

Keywords

Navigation