Skip to main content

Advertisement

Log in

Role of ARID1A in the Regulation of Human Trophoblast Migration and Invasion

  • Reproductive Biology: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Migration and invasion of trophoblasts is critical for human placental development, trophoblastic differentiation, and pregnancy-associated diseases. AT-rich interactive domain-containing protein 1A (ARID1A), a subunit of the SWI-SNF complex, has been suggested to participate in the regulation of fertility via placental disruption in mice. However, whether ARID1A regulates human placental development and function remains unknown. Here, using human trophoblast-like JEG-3 cell line, we report that ARID1A controls trophoblast cell migration and invasion. Overexpression of ARID1A inhibits JEG-3 cell migration and invasion, whereas knockdown of ARID1A promotes migration and invasion in JEG-3 cells. Mechanistically, while ARID1A reduces JEG-3 cell migration by down-regulation of Snail transcription, it restrains JEG-3 cell invasion by binding to and destabilization of MMP-9 protein. Finally, ARID1A is apparently up-regulated in placental tissues of preeclampsia compared to that of normal pregnancies. Our results thereby imply that ARID1A acts as a critical gene in supporting the physiological function of human mature placenta.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ARID1A:

AT-rich interactive domain-containing protein 1A

CHX:

Cycloheximide

CTB:

Cytotrophoblast

DAB:

Diaminobenzidine

DAPI:

4′,6-Diamidino-2-phenylindole

EMT:

Epithelial-mesenchymal transition

EVT:

Extravillous trophoblast

HET293T:

Human embryonic kidney 293T

MMP:

Matrix metalloproteinase

PE:

Preeclampsia

PLA:

Proximity ligation assay

STB:

Syncytiotrophoblast

ZEB:

Zinc-finger E-box-binding

References

  1. Kokkinos MI, Murthi P, Wafai R, Thompson EW, Newgreen DF. Cadherins in the human placenta-epithelial-mesenchymal transition (EMT) and placental development. Placenta. 2010;31(9):747–55.

    Article  CAS  PubMed  Google Scholar 

  2. Chang CW, Wakeland AK, Parast MM. Trophoblast lineage specification, differentiation and their regulation by oxygen tension. J Endocrinol. 2018;236(1):43–56.

    Article  Google Scholar 

  3. Knöfler M, Haider S, Saleh L, Pollheimer J, Gamage TKJB, James J. Human placenta and trophoblast development: key molecular mechanisms and model systems. Cell Mol Life Sci. 2019;76(18):3479–96.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pijnenborg R, Vercruysse L, Hanssens M. The uterine spiral arteries in human pregnancy: facts and controversies. Placenta. 2006;27(9-10):939–58.

    Article  CAS  PubMed  Google Scholar 

  5. Saghian R, Bogle G, James JL, Clark AR. Establishment of maternal blood supply to the placenta: insights into plugging, unplugging and trophoblast behaviour from an agent-based model. Interface Focus. 2019;9(5):20190019.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Louwen F, Muschol-Steinmetz C, Reinhard J, Reitter A, Yuan J. A lesson for cancer research: placental microarray gene analysis in preeclampsia. Oncotarget. 2012;3:759–73.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Redman CW, Sargent IL. Latest advances in understanding preeclampsia. Science. 2005;308:1592–4.

    Article  CAS  PubMed  Google Scholar 

  8. Ball E, Bulmer JN, Ayis S, Lyall F, Robson SC. Late sporadic miscarriage is associated with abnormalities in spiral artery transformation and trophoblast invasion. J Pathol. 2006;208:535–42.

    Article  CAS  PubMed  Google Scholar 

  9. Khong TY. The pathology of placenta accreta, a worldwide epidemic. J Clin Pathol. 2008;61:1243–6.

    Article  CAS  PubMed  Google Scholar 

  10. Tseng JJ, Chou MM. Differential expression of growth-, angiogenesis- and invasion-related factors in the development of placenta accreta. Taiwan J Obstet Gynecol. 2006;45:100–6.

    Article  PubMed  Google Scholar 

  11. Nakazato H, Takeshima H, Kishino T, Kubo E, Hattori N, Nakajima T, et al. Early-stage induction of SWI/SNF mutations during esophageal squamous cell carcinogenesis. PLoS One. 2016;11(1):e0147372.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Muchardt C, Yaniv M. ATP-dependent chromatin remodelling: SWI/SNF and co. are on the job. J Mol Biol. 1999;293(2):187–98.

    Article  CAS  PubMed  Google Scholar 

  13. Nagl NG, Wang X, Patsialou A, van Scoy M, Moran E. Distinct mammalian SWI/SNF chromatin remodeling complexes with opposing roles in cell-cycle control. EMBO J. 2007;26(3):752–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jones S, Li M, Parsons DW, Zhang X, Wesseling J, Kristel P, et al. Somatic mutations in the chromatin remodeling gene ARID1A occur in several tumor types. Hum Mutat. 2011;33(1):100–3.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Qu YL, Deng CH, Luo Q, Shang XY, Wu JX, Shi Y, et al. Arid1a regulates insulin sensitivity and lipid metabolism. EBioMedicine. 2019;42:481–93.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Park JH, Lee C, Suh JH, Chae JY, Kim HW, Moon KC. Decreased ARID1A expression correlates with poor prognosis of clear cell renal cell carcinoma. Hum Pathol. 2015;46:454–60.

    Article  CAS  PubMed  Google Scholar 

  17. Wang K, Kan J, Yuen ST, Shi ST, Chu KM, Law S, et al. Exome sequencing identifies frequent mutation of ARID1A in molecular subtypes of gastric cancer. Nat Genet. 2011;43:1219–23.

    Article  CAS  PubMed  Google Scholar 

  18. Balbas-Martinez C, Rodriguez-Pinilla M, Casanova A, Dominguez O, Pisano DG, Gomez G, et al. ARID1A alterations are associated with FGFR3-wild type, poor-prognosis, urothelial bladder tumors. PLoS One. 2013;8:e62483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Birnbaum DJ, Adelaide J, Mamessier E, Finetti P, Lagarde A, Monges G, et al. Genome profiling of pancreatic adenocarcinoma. Genes Chromosom Cancer. 2011;50:456–65.

    Article  CAS  PubMed  Google Scholar 

  20. Mathur R, Alver BH, San Roman AK, Wilson BG, Wang X, Agoston AT, et al. ARID1A loss impairs enhancer-mediated gene regulation and drives colon cancer in mice. Nat Genet. 2017;49(2):296–302.

    Article  CAS  PubMed  Google Scholar 

  21. Yokoyama Y, Matsushita Y, Shigeto T, Futagami M, Mizunuma H. Decreased ARID1A expression is correlated with chemoresistance in epithelial ovarian cancer. J Gynecol Oncol. 2014;25(1):58–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gao X, Tate P, Hu P, Tjian R, Skarnes WC, Wang Z. ES cell pluripotency and germ-layer formation require the SWI/SNF chromatin remodeling component BAF250a. Proc Natl Acad Sci U S A. 2008;105:6656–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang X, Khatri S, Broaddus R, Wang Z, Hawkins SM. Deletion of Arid1a in reproductive tract mesenchymal cells reduces fertility in female mice. Biol Reprod. 2016;94(4):93.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhu H, Zou C, Fan X, Xiong W, Tang L, Wu X, et al. Up-regulation of 11β-hydroxysteroid dehydrogenase type 2 expression by hedgehog ligand contributes to the conversion of cortisol into cortisone. Endocrinology. 2016;157:3529–39.

    Article  CAS  PubMed  Google Scholar 

  25. Tang C, Pan Y, Luo H, Xiong W, Zhu H, Ruan H, et al. Hedgehog signaling stimulates the conversion of cholesterol to steroids. Cell Signal. 2015;27:487–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tang C, Takahashi-Kanemitsu A, Kikuchi I, Ben C, Hatakeyama M. Transcriptional co-activator functions of YAP and TAZ are inversely regulated by tyrosine phosphorylation status of parafibromin. iScience. 2018;1:1–15.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tang C, Tang L, Wu X, Xiong W, Ruan H, Hussain M, et al. Glioma-associated oncogene 2 is essential for trophoblastic fusion by forming a transcriptional complex with glial cell missing-a. J Biol Chem. 2016;291:5611–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tang C, Mei L, Pan L, Xiong W, Zhu H, Ruan H, et al. Hedgehog signaling through GLI1 and GLI2 is required for epithelial-mesenchymal transition in human trophoblasts. Biochim Biophys Acta. 1850;2015:1438–48.

    Google Scholar 

  29. Brosens JJ, Pijnenborg R, Brosens IA. The myometrial junctional zone spiral arteries in normal and abnormal pregnancies: a review of the literature. Am J Obstet Gynecol. 2002;187:1416–23.

    Article  PubMed  Google Scholar 

  30. Cartwright JE, Fraser R, Leslie K, Wallace AE, James JL. Remodelling at the maternal-fetal interface: relevance to human pregnancy disorders. Reproduction. 2010;140:803–13.

    Article  CAS  PubMed  Google Scholar 

  31. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15:178–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Huang H. Matrix metalloproteinase-9 (MMP-9) as a cancer biomarker and MMP-9 biosensors: recent advances. Sensors. 2018;18(10):3249.

    Article  PubMed Central  Google Scholar 

  33. Sprangers S, Vincent E. Molecular pathways of cell-mediated degradation of fibrillar collagen. Matrix Biol. 2019;75:190–200.

    Article  PubMed  Google Scholar 

  34. Liu X, Gu W, Li X. HLA-G regulates the invasive properties of JEG-3 choriocarcinoma cells by controlling STAT3 activation. Placenta. 2013;34(11):1044–52.

    Article  CAS  PubMed  Google Scholar 

  35. Sokolov DI, Furaeva KN, Stepanova OI, Sel'kov SA. Proliferative and migration activity of JEG-3 trophoblast cell line in the presence of cytokines. Bull Exp Biol Med. 2015;159(4):550–6.

    Article  CAS  PubMed  Google Scholar 

  36. Sun X, Wang SC, Wei Y, Luo X, Jia Y, Li L, et al. Arid1a has context-dependent oncogenic and tumor suppressor functions in liver cancer. Cancer Cell. 2017;32:574–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xu G, Chhangawala S, Cocco E, Razavi P, Cai Y, Otto JE, et al. ARID1A determines luminal identity and therapeutic response in estrogen-receptor-positive breast cancer. Nat Genet. 2020;52:198–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim YB, Ahn JM, Bae WJ, Sung CO, Lee D. Functional loss of ARID1A is tightly associated with high PD-L1 expression in gastric cancer. Int J Cancer. 2019;145:916–26.

    Article  CAS  PubMed  Google Scholar 

  39. Guan B, Rahmanto YS, Wu RC, Wang Y, Wang Z, Wang TL, et al. Roles of deletion of Arid1a, a tumor suppressor, in mouse ovarian tumorigenesis. J Natl Cancer Inst. 2014;106.

  40. Lakshminarasimhan R, Andreu-Vieyra C, Lawrenson K, Duymich CE, Gayther SA, Liang G, et al. Down-regulation of ARID1A is sufficient to initiate neoplastic transformation along with epigenetic reprogramming in non-tumorigenic endometriotic cells. Cancer Lett. 2017;401:11–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rahmanto YS, Jung JG, Wu RC, Kobayashi Y, Heaphy CM, Meeker AK, et al. Inactivating ARID1A tumor suppressor enhances TERT transcription and maintains telomere length in cancer cells. J Biol Chem. 2016;291:9690–9.

    Article  CAS  PubMed Central  Google Scholar 

  42. Mierke CT. Mechanical cues affect migration and invasion of cells from three different directions. Front Cell Dev Biol. 2020;8:583226.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Chaudhary P, Babu GS, Sobti RC, Gupta SK. HGF regulate HTR-8/SVneo trophoblastic cells migration/invasion under hypoxic conditions through increased HIF-1α expression via MAPK and PI3K pathways. J Cell Commun Signal. 2019;13(4):503–21.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zhang WJ, Hu CG, Luo HL, Zhu ZM. Activation of P2×7 receptor promotes the invasion and migration of colon cancer cells via the STAT3 signaling. Front Cell Dev Biol. 2020;8:586555.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Rama S, Suresh Y, Rao AJ. TGF β1 induces multiple independent signals to regulate human trophoblastic differentiation: mechanistic insights. Mol Cell Endocrinol. 2003;206:123–36.

    Article  CAS  PubMed  Google Scholar 

  46. Rahnama F, Shafiei F, Gluckman PD, Mitchell MD, Lobie PE. Epigenetic regulation of human trophoblastic cell migration and invasion. Endocrinology. 2006;11:5275–83.

    Article  Google Scholar 

  47. Boulenouar S, Weyn C, Noppen MV, Ali MM, Favre M, Delvenne PO, et al. Effects of HPV-16 E5, E6 and E7 proteins on survival, adhesion, migration and invasion of trophoblastic cells. Carcinogenesis. 2010;31:473–80.

    Article  CAS  PubMed  Google Scholar 

  48. Zhou BP, Deng J, Xia W, Xu J, Li YM, Gunduz M, et al. Dual regulation of Snail by GSK-3β-mediated phosphorylation in control of epithelial–mesenchymal transition. Nat Cell Biol. 2004;6:931–40.

    Article  CAS  PubMed  Google Scholar 

  49. Usami Y, Satake S, Nakayama F, Matsumoto M, Ohnuma K, Komori T, et al. Snail-associated epithelial-mesenchymal transition promotes oesophageal squamous cell carcinoma motility and progression. J Pathol. 2008;215:330–9.

    Article  CAS  PubMed  Google Scholar 

  50. Radisky ES, Raeeszadeh-Sarmazdeh M, Radisky DC. Therapeutic potential of matrix metalloproteinase inhibition in breast cancer. J Cell Biochem. 2017;118:3531–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cepeda MA, Evered CL, Pelling JJ, Damjanovski S. Inhibition of MT1-MMP proteolytic function and ERK1/2 signalling influences cell migration and invasion through changes in MMP-2 and MMP-9 levels. J Cell Commun Signal. 2017;11:167–79.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Huppertz B, Ghosh D, Sengupta J. An integrative view on the physiology of human early placental villi. Prog Biophys Mol Biol. 2014;114(1):33–48.

    Article  PubMed  Google Scholar 

  53. Kawamura E, Hamilton GB, Miskiewicz EI, MacPhee DJ. Fermitin family homolog-2 (FERMT2) is highly expressed in human placental villi and modulates trophoblast invasion. BMC Dev Biol. 2018;18(1):19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Velicky P, Windsperger K, Petroczi K, Pils S, Reiter B, Weiss T, et al. Pregnancy-associated diamine oxidase originates from extravillous trophoblasts and is decreased in early-onset preeclampsia. Sci Rep. 2018;8(1):6342.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ander SE, Diamond MS, Coyne CB. Immune responses at the maternal-fetal interface. Sci Immunol. 2019;4(31):eaat6114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Staff AC, Benton SJ, von Dadelszen P, et al. Redefining preeclampsia using placenta-derived biomarkers. Hypertension. 2013;61(5):932–42.

    Article  CAS  PubMed  Google Scholar 

Download references

Availability of Data and Material

All data generated or analyzed during this study are included in this published article.

Code Availability

Not applicable.

Funding

This work is supported by the Medical and Health Science and Technology Project of Zhejiang Province (No. 2020KY504) to M. Jin and by the Starting Research Fund from the Children’s Hospital, Zhejiang University School of Medicine (No. 481) and National Natural Science Foundation of China (No. 31801207) to C. Tang.

Author information

Authors and Affiliations

Authors

Contributions

M. Jin and S. Xu performed the research and analyzed the data. J. Li and L. Li edited the manuscript. C. Tang designed the experiments and wrote the manuscript.

Corresponding author

Correspondence to Chao Tang.

Ethics declarations

Ethics Approval

The Ethics Committee of Tongde Hospital of Zhejiang Province approved all the protocols of the study.

Consent to Participate

All participants provided written informed consent for the use of placental villus tissues.

Consent for Publication

The author declares that all work described here has not been published before and that its publication has been approved by all co-authors.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, M., Xu, S., Li, J. et al. Role of ARID1A in the Regulation of Human Trophoblast Migration and Invasion. Reprod. Sci. 29, 2363–2373 (2022). https://doi.org/10.1007/s43032-021-00686-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-021-00686-0

Keywords

Navigation