Skip to main content
Log in

Coiled-Coil Domain-Containing (CCDC) Proteins: Functional Roles in General and Male Reproductive Physiology

  • Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

The coiled-coil domain-containing (CCDC) proteins have been implicated in a variety of physiological and pathological processes. Their functional roles vary from their interaction with molecular components of signaling pathways to determining the physiological functions at the cellular and organ level. Thus, they govern important functions like gametogenesis, embryonic development, hematopoiesis, angiogenesis, and ciliary development. Further, they are implicated in the pathogenesis of a large number of cancers. Polymorphisms in CCDC genes are associated with the risk of lifetime diseases. Because of their role in many biological processes, they have been extensively studied. This review concisely presents the functional role of CCDC proteins that have been studied in the last decade. Studies on CCDC proteins continue to be an active area of investigation because of their indispensable functions. However, there is ample opportunity to further understand the involvement of CCDC proteins in many more functions. It is anticipated that basing on the available literature, the functional role of CCDC proteins will be explored much further.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Code Availability

Not applicable.

References

  1. Hall SH, Yenugu S, Radhakrishnan Y, Avellar MC, Petrusz P, French FS. Characterization and functions of beta defensins in the epididymis. Asian J Androl. 2007;9:453–62.

    Article  CAS  PubMed  Google Scholar 

  2. Zhou W, De Iuliis GN, Dun MD, Nixon B. Characteristics of the epididymal luminal environment responsible for sperm maturation and storage. Front Endocrinol (Lausanne). 2018;9:59.

    Article  Google Scholar 

  3. Rose A, Schraegle SJ, Stahlberg EA, Meier I. Coiled-coil protein composition of 22 proteomes--differences and common themes in subcellular infrastructure and traffic control. BMC Evol Biol. 2005;5:66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Lupas AN, Bassler J, Dunin-Horkawicz S. The structure and topology of alpha-helical coiled coils. Subcell Biochem. 2017;82:95–129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Truebestein L, Leonard TA. Coiled-coils: the long and short of it. Bioessays. 2016;38:903–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gong Y, Qiu W, Ning X, Yang X, Liu L, Wang Z, et al. CCDC34 is up-regulated in bladder cancer and regulates bladder cancer cell proliferation, apoptosis and migration. Oncotarget. 2015;6:25856–67.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tanouchi A, Taniuchi K, Furihata M, Naganuma S, Dabanaka K, Kimura M, et al. CCDC88A, a prognostic factor for human pancreatic cancers, promotes the motility and invasiveness of pancreatic cancer cells. J Exp Clin Cancer Res. 2016;35:190.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Yin DT, Xu J, Lei M, Li H, Wang Y, Liu Z, et al. Characterization of the novel tumor-suppressor gene CCDC67 in papillary thyroid carcinoma. Oncotarget. 2016;7:5830–41.

    Article  PubMed  Google Scholar 

  9. Park SJ, Jang HR, Kim M, Kim JH, Kwon OH, Park JL, et al. Epigenetic alteration of CCDC67 and its tumor suppressor function in gastric cancer. Carcinogenesis. 2012;33:1494–501.

    Article  CAS  PubMed  Google Scholar 

  10. Farfsing A, Engel F, Seiffert M, Hartmann E, Ott G, Rosenwald A, et al. Gene knockdown studies revealed CCDC50 as a candidate gene in mantle cell lymphoma and chronic lymphocytic leukemia. Leukemia. 2009;23:2018–26.

    Article  CAS  PubMed  Google Scholar 

  11. Chen M, Ni J, Chang HC, Lin CY, Muyan M, Yeh S. CCDC62/ERAP75 functions as a coactivator to enhance estrogen receptor beta-mediated transactivation and target gene expression in prostate cancer cells. Carcinogenesis. 2009;30:841–50.

    Article  CAS  PubMed  Google Scholar 

  12. Kim H, Huang J, Chen J. CCDC98 is a BRCA1-BRCT domain-binding protein involved in the DNA damage response. Nat Struct Mol Biol. 2007;14:710–5.

    Article  CAS  PubMed  Google Scholar 

  13. Sha Y, Xu Y, Wei X, Liu W, Mei L, Lin S, et al. CCDC9 is identified as a novel candidate gene of severe asthenozoospermia. Syst Biol Reprod Med. 2019;65:465–73.

    Article  CAS  PubMed  Google Scholar 

  14. Kaczmarek K, Niedzialkowska E, Studencka M, Schulz Y, Grzmil P. Ccdc33, a predominantly testis-expressed gene, encodes a putative peroxisomal protein. Cytogenet Genome Res. 2009;126:243–52.

    Article  CAS  PubMed  Google Scholar 

  15. Lin SR, Li YC, Luo ML, Guo H, Wang TT, Chen JB, et al. Identification and characteristics of the testes-specific gene, Ccdc38, in mice. Mol Med Rep. 2016;14:1290–6.

    Article  CAS  PubMed  Google Scholar 

  16. Abdelhamed Z, Vuong SM, Hill L, Shula C, Timms A, Beier D, et al. A mutation in Ccdc39 causes neonatal hydrocephalus with abnormal motile cilia development in mice. Development. 2018;145.

  17. Antony D, Becker-Heck A, Zariwala MA, Schmidts M, Onoufriadis A, Forouhan M, et al. Mutations in CCDC39 and CCDC40 are the major cause of primary ciliary dyskinesia with axonemal disorganization and absent inner dynein arms. Hum Mutat. 2013;34:462–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Emmert AS, Iwasawa E, Shula C, Schultz P, Lindquist D, Dunn RS, et al. Impaired neural differentiation and glymphatic CSF flow in the Ccdc39 rat model of neonatal hydrocephalus: genetic interaction with L1cam. Dis Model Mech. 2019;12.

  19. Merveille AC, Davis EE, Becker-Heck A, Legendre M, Amirav I, Bataille G, et al. CCDC39 is required for assembly of inner dynein arms and the dynein regulatory complex and for normal ciliary motility in humans and dogs. Nat Genet. 2011;43:72–8.

    Article  CAS  PubMed  Google Scholar 

  20. Meyberg R, Perroud PF, Haas FB, Schneider L, Heimerl T, Renzaglia KS, et al. Characterisation of evolutionarily conserved key players affecting eukaryotic flagellar motility and fertility using a moss model. New Phytol. 2020;227:440–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tapia Contreras C, Hoyer-Fender S. CCDC42 localizes to manchette, HTCA and tail and interacts with ODF1 and ODF2 in the formation of the male germ cell cytoskeleton. Front Cell Dev Biol. 2019;7:151.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Pasek RC, Malarkey E, Berbari NF, Sharma N, Kesterson RA, Tres LL, et al. Coiled-coil domain containing 42 (Ccdc42) is necessary for proper sperm development and male fertility in the mouse. Dev Biol. 2016;412:208–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yamamoto R, Song K, Yanagisawa HA, Fox L, Yagi T, Wirschell M, et al. The MIA complex is a conserved and novel dynein regulator essential for normal ciliary motility. J Cell Biol. 2013;201:263–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Domae S, Nakamura Y, Nakamura Y, Uenaka A, Wada H, Nakata M, et al. Identification of CCDC62-2 as a novel cancer/testis antigen and its immunogenicity. Int J Cancer. 2009;124:2347–52.

    Article  CAS  PubMed  Google Scholar 

  25. Lu Y, Tan L, Shen N, Peng J, Wang C, Zhu Y, et al. Possible association of CCDC62 rs12817488 polymorphism and Parkinson’s disease risk in Chinese population: a meta-analysis. Sci Rep. 2016;6:23991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li Y, Li C, Lin S, Yang B, Huang W, Wu H, et al. A nonsense mutation in Ccdc62 gene is responsible for spermiogenesis defects and male infertility in repro29/repro29 mice. Biol Reprod. 2017;96:587–97.

    Article  PubMed  Google Scholar 

  27. Young SA, Miyata H, Satouh Y, Kato H, Nozawa K, Isotani A, et al. CRISPR/Cas9-mediated rapid generation of multiple mouse lines identified Ccdc63 as essential for spermiogenesis. Int J Mol Sci. 2015;16:24732–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen JB, Zheng WZ, Li YC, Lin SR, Zhang Z, Wu Y, et al. Expression characteristics of the Ccdc70 gene in the mouse testis during spermatogenesis. Zhonghua Nan Ke Xue. 2016;22:12–6.

    PubMed  Google Scholar 

  29. Khan M, Jabeen N, Khan T, Hussain HMJ, Ali A, Khan R, et al. The evolutionarily conserved genes: Tex37, Ccdc73, Prss55 and Nxt2 are dispensable for fertility in mice. Sci Rep. 2018;8:4975.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Majczenko K, Davidson AE, Camelo-Piragua S, Agrawal PB, Manfready RA, Li X, et al. Dominant mutation of CCDC78 in a unique congenital myopathy with prominent internal nuclei and atypical cores. Am J Hum Genet. 2012;91:365–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Song MH, Ha JM, Shin DH, Lee CH, Old L, Lee SY. KP-CoT-23 (CCDC83) is a novel immunogenic cancer/testis antigen in colon cancer. Int J Oncol. 2012;41:1820–6.

    Article  CAS  PubMed  Google Scholar 

  32. Wang T, Yin Q, Ma X, Tong MH, Zhou Y. Ccdc87 is critical for sperm function and male fertility. Biol Reprod. 2018;99:817–27.

    CAS  PubMed  Google Scholar 

  33. Wang Y, Li J, Feng C, Zhao Y, Hu X, Li N. Transcriptome analysis of comb and testis from Rose-comb Silky chicken (R1/R1) and Beijing fatty wild type chicken (r/r). Poult Sci. 2017;96:1866–73.

    Article  CAS  PubMed  Google Scholar 

  34. Wang M, Liu X, Chang G, Chen Y, An G, Yan L, et al. Single-cell RNA sequencing analysis reveals sequential cell fate transition during human spermatogenesis. Cell Stem Cell. 2018;23:599–614 e4.

    Article  CAS  PubMed  Google Scholar 

  35. Firat-Karalar EN, Sante J, Elliott S, Stearns T. Proteomic analysis of mammalian sperm cells identifies new components of the centrosome. J Cell Sci. 2014;127:4128–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Yang Y, Cochran DA, Gargano MD, King I, Samhat NK, Burger BP, et al. Regulation of flagellar motility by the conserved flagellar protein CG34110/Ccdc135/FAP50. Mol Biol Cell. 2011;22:976–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Geng Q, Ni L, Ouyang B, Hu Y, Zhao Y, Guo J. A novel testis-specific gene, Ccdc136, is required for acrosome formation and fertilization in mice. Reprod Sci. 2016;23:1387–96.

    Article  CAS  PubMed  Google Scholar 

  38. Smiley S, Nickerson PE, Comanita L, Daftarian N, El-Sehemy A, Tsai EL, et al. Establishment of a cone photoreceptor transplantation platform based on a novel cone-GFP reporter mouse line. Sci Rep. 2016;6:22867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wei S, Shang H, Cao Y, Wang Q. The coiled-coil domain containing protein Ccdc136b antagonizes maternal Wnt/beta-catenin activity during zebrafish dorsoventral axial patterning. J Genet Genomics. 2016;43:431–8.

    Article  PubMed  Google Scholar 

  40. Liu Y, Kheradmand F, Davis CF, Scheurer ME, Wheeler D, Tsavachidis S, et al. Focused analysis of exome sequencing data for rare germline mutations in familial and sporadic lung cancer. J Thorac Oncol. 2016;11:52–61.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Alsaadi MM, Erzurumluoglu AM, Rodriguez S, Guthrie PA, Gaunt TR, Omar HZ, et al. Nonsense mutation in coiled-coil domain containing 151 gene (CCDC151) causes primary ciliary dyskinesia. Hum Mutat. 2014;35:1446–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Deng S, Wu S, Xia H, Xiong W, Deng X, Liao J, et al. Identification of a frame shift mutation in the CCDC151 gene in a Han-Chinese family with Kartagener syndrome. Biosci Rep. 2020;40.

  43. Jerber J, Baas D, Soulavie F, Chhin B, Cortier E, Vesque C, et al. The coiled-coil domain containing protein CCDC151 is required for the function of IFT-dependent motile cilia in animals. Hum Mol Genet. 2014;23:563–77.

    Article  CAS  PubMed  Google Scholar 

  44. Yamaguchi A, Kaneko T, Inai T, Iida H. Molecular cloning and subcellular localization of Tektin2-binding protein 1 (Ccdc 172) in rat spermatozoa. J Histochem Cytochem. 2014;62:286–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Shimasaki S, Yamamoto E, Murayama E, Kurio H, Kaneko T, Shibata Y, et al. Subcellular localization of Tektin2 in rat sperm flagellum. Zool Sci. 2010;27:755–61.

    Article  CAS  Google Scholar 

  46. Tanaka H, Iguchi N, Toyama Y, Kitamura K, Takahashi T, Kaseda K, et al. Mice deficient in the axonemal protein Tektin-t exhibit male infertility and immotile-cilium syndrome due to impaired inner arm dynein function. Mol Cell Biol. 2004;24:7958–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schwarz T, Prieler B, Schmid JA, Grzmil P, Neesen J. Ccdc181 is a microtubule-binding protein that interacts with Hook1 in haploid male germ cells and localizes to the sperm tail and motile cilia. Eur J Cell Biol. 2017;96:276–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Iso-Touru T, Wurmser C, Venhoranta H, Hiltpold M, Savolainen T, Sironen A, et al. A splice donor variant in CCDC189 is associated with asthenospermia in Nordic Red dairy cattle. BMC Genomics. 2019;20:286.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Gheldof A, Mackay DJG, Cheong Y, Verpoest W. Genetic diagnosis of subfertility: the impact of meiosis and maternal effects. J Med Genet. 2019;56:271–82.

    Article  CAS  PubMed  Google Scholar 

  50. Merolla F, Luise C, Muller MT, Pacelli R, Fusco A, Celetti A. Loss of CCDC6, the first identified RET partner gene, affects pH2AX S139 levels and accelerates mitotic entry upon DNA damage. PLoS One. 2012;7:e36177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Thanasopoulou A, Xanthopoulou AG, Anagnostopoulos AK, Konstantakou EG, Margaritis LH, Papassideri IS, et al. Silencing of CCDC6 reduces the expression of 14-3-3sigma in colorectal carcinoma cells. Anticancer Res. 2012;32:907–13.

    CAS  PubMed  Google Scholar 

  52. Liu Z, Wu J, Yu X. CCDC98 targets BRCA1 to DNA damage sites. Nat Struct Mol Biol. 2007;14:716–20.

    Article  CAS  PubMed  Google Scholar 

  53. Feng L, Huang J, Chen J. MERIT40 facilitates BRCA1 localization and DNA damage repair. Genes Dev. 2009;23:719–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Novak DJ, Sabbaghian N, Maillet P, Chappuis PO, Foulkes WD, Tischkowitz M. Analysis of the genes coding for the BRCA1-interacting proteins, RAP80 and Abraxas (CCDC98), in high-risk, non-BRCA1/2, multiethnic breast cancer cases. Breast Cancer Res Treat. 2009;117:453–9.

    Article  CAS  PubMed  Google Scholar 

  55. Gunes S, Al-Sadaan M, Agarwal A. Spermatogenesis, DNA damage and DNA repair mechanisms in male infertility. Reprod BioMed Online. 2015;31:309–19.

    Article  CAS  PubMed  Google Scholar 

  56. Voineagu I, Huang L, Winden K, Lazaro M, Haan E, Nelson J, et al. CCDC22: a novel candidate gene for syndromic X-linked intellectual disability. Mol Psychiatry. 2012;17:4–7.

    Article  CAS  PubMed  Google Scholar 

  57. Paggio A, Checchetto V, Campo A, Menabo R, Di Marco G, Di Lisa F, et al. Identification of an ATP-sensitive potassium channel in mitochondria. Nature. 2019;572:609–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Arai T, Kojima S, Yamada Y, Sugawara S, Kato M, Yamazaki K, et al. Pirin: a potential novel therapeutic target for castration-resistant prostate cancer regulated by miR-455-5p. Mol Oncol. 2019;13:322–37.

    Article  CAS  PubMed  Google Scholar 

  59. Sprooten E, Knowles EE, McKay DR, Goring HH, Curran JE, Kent JW Jr, et al. Common genetic variants and gene expression associated with white matter microstructure in the human brain. Neuroimage. 2014;97:252–61.

    Article  CAS  PubMed  Google Scholar 

  60. Brugger M, Becker-Dettling F, Brunet T, Strom T, Meitinger T, Lurz E, et al. A homozygous truncating variant in CCDC186 in an individual with epileptic encephalopathy. Ann Clin Transl Neurol. 2021;8:278–83.

    Article  CAS  PubMed  Google Scholar 

  61. Pensold D, Zimmer G. Single-cell transcriptomics reveals regulators of neuronal migration and maturation during brain development. J Exp Neurosci. 2018;12:1179069518760783.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Niu D, Ren Y, Xie L, Sun J, Lu W, Hao Y, et al. Association between CCDC132, FDX1 and TNFSF13 gene polymorphisms and the risk of IgA nephropathy. Nephrology (Carlton). 2015;20:908–15.

    Article  CAS  Google Scholar 

  63. Gong D, Zhang Q, Chen LY, Yu XH, Wang G, Zou J, et al. Coiled-coil domain-containing 80 accelerates atherosclerosis development through decreasing lipoprotein lipase expression via ERK1/2 phosphorylation and TET2 expression. Eur J Pharmacol. 2019;843:177–89.

    Article  CAS  PubMed  Google Scholar 

  64. Snezhkina AV, Lukyanova EN, Fedorova MS, Kalinin DV, Melnikova NV, Stepanov OA, et al. Novel genes associated with the development of carotid paragangliomas. Mol Biol (Mosk). 2019;53:613–26.

    Article  CAS  Google Scholar 

  65. Miller CL, Pjanic M, Wang T, Nguyen T, Cohain A, Lee JD, et al. Integrative functional genomics identifies regulatory mechanisms at coronary artery disease loci. Nat Commun. 2016;7:12092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Huang Q, Deng G, Wei R, Wang Q, Zou D, Wei J. Comprehensive identification of key genes involved in development of diabetes mellitus-related atherogenesis using weighted gene correlation network analysis. Front Cardiovasc Med. 2020;7:580573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Starokadomskyy P, Gluck N, Li H, Chen B, Wallis M, Maine GN, et al. CCDC22 deficiency in humans blunts activation of proinflammatory NF-kappaB signaling. J Clin Invest. 2013;123:2244–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Huang J, Xiao L, Gong X, Shao W, Yin Y, Liao Q, et al. Cytokine-like molecule CCDC134 contributes to CD8(+) T-cell effector functions in cancer immunotherapy. Cancer Res. 2014;74:5734–45.

    Article  CAS  PubMed  Google Scholar 

  69. Fei Wang, Ran Chen, Han D. Innate immune defense in the male reproductive system and male fertility. Innate Immunity in Health and Disease2019.

  70. Barenz F, Kschonsak YT, Meyer A, Jafarpour A, Lorenz H, Hoffmann I. Ccdc61 controls centrosomal localization of Cep170 and is required for spindle assembly and symmetry. Mol Biol Cell. 2018;29:3105–18.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Burroughs AM, Kaur G, Zhang D, Aravind L. Novel clades of the HU/IHF superfamily point to unexpected roles in the eukaryotic centrosome, chromosome partitioning, and biologic conflicts. Cell Cycle. 2017;16:1093–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Dho SE, Silva-Gagliardi N, Morgese F, Coyaud E, Lamoureux E, Berry DM, et al. Proximity interactions of the ubiquitin ligase Mind bomb 1 reveal a role in regulation of epithelial polarity complex proteins. Sci Rep. 2019;9:12471.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Kodani A, Yu TW, Johnson JR, Jayaraman D, Johnson TL, Al-Gazali L, et al. Centriolar satellites assemble centrosomal microcephaly proteins to recruit CDK2 and promote centriole duplication. Elife. 2015;4.

  74. Harel T, Griffin JN, Arbogast T, Monroe TO, Palombo F, Martinelli M, et al. Loss of function mutations in CCDC32 cause a congenital syndrome characterized by craniofacial, cardiac and neurodevelopmental anomalies. Hum Mol Genet. 2020;29:1489–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sillibourne JE, Hurbain I, Grand-Perret T, Goud B, Tran P, Bornens M. Primary ciliogenesis requires the distal appendage component Cep123. Biol Open. 2013;2:535–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Drew K, Lee C, Huizar RL, Tu F, Borgeson B, McWhite CD, et al. Integration of over 9,000 mass spectrometry experiments builds a global map of human protein complexes. Mol Syst Biol. 2017;13:932.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Jensen VL, Carter S, Sanders AA, Li C, Kennedy J, Timbers TA, et al. Whole-organism developmental expression profiling identifies RAB-28 as a novel ciliary GTPase associated with the BBSome and intraflagellar transport. PLoS Genet. 2016;12:e1006469.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Morimoto K, Hijikata M, Zariwala MA, Nykamp K, Inaba A, Guo TC, et al. Recurring large deletion in DRC1 (CCDC164) identified as causing primary ciliary dyskinesia in two Asian patients. Mol Genet Genomic Med. 2019;7:e838.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Abbasi F, Miyata H, Shimada K, Morohoshi A, Nozawa K, Matsumura T, et al. RSPH6A is required for sperm flagellum formation and male fertility in mice. J Cell Sci. 2018;131.

  80. Girardet L, Augiere C, Asselin MP, Belleannee C. Primary cilia: biosensors of the male reproductive tract. Andrology. 2019;7:588–602.

    PubMed  Google Scholar 

  81. Eberlein A, Kalbe C, Goldammer T, Brunner RM, Kuehn C, Weikard R. Analysis of structure and gene expression of bovine CCDC3 gene indicates a function in fat metabolism. Comp Biochem Physiol B Biochem Mol Biol. 2010;156:19–25.

    Article  PubMed  CAS  Google Scholar 

  82. Azad AK, Chakrabarti S, Xu Z, Davidge ST, Fu Y. Coiled-coil domain containing 3 (CCDC3) represses tumor necrosis factor-alpha/nuclear factor kappaB-induced endothelial inflammation. Cell Signal. 2014;26:2793–800.

    Article  CAS  PubMed  Google Scholar 

  83. Zhang XF, An MZ, Ma YP, Lu YM. Regulatory effects of CCDC3 on proliferation, migration, invasion and EMT of human cervical cancer cells. Eur Rev Med Pharmacol Sci. 2019;23:3217–24.

    PubMed  Google Scholar 

  84. Iwai A, Hijikata M, Hishiki T, Isono O, Chiba T, Shimotohno K. Coiled-coil domain containing 85B suppresses the beta-catenin activity in a p53-dependent manner. Oncogene. 2008;27:1520–6.

    Article  CAS  PubMed  Google Scholar 

  85. Feng Y, Gao Y, Yu J, Jiang G, Zhang X, Lin X, et al. CCDC85B promotes non-small cell lung cancer cell proliferation and invasion. Mol Carcinog. 2019;58:126–34.

    Article  CAS  PubMed  Google Scholar 

  86. Zhong J, Zhao M, Luo Q, Ma Y, Liu J, Wang J, et al. CCDC134 is down-regulated in gastric cancer and its silencing promotes cell migration and invasion of GES-1 and AGS cells via the MAPK pathway. Mol Cell Biochem. 2013;372:1–8.

    Article  CAS  PubMed  Google Scholar 

  87. Drogan D, Boeing H, Janke J, Schmitt B, Zhou Y, Walter J, et al. Regional distribution of body fat in relation to DNA methylation within the LPL, ADIPOQ and PPARgamma promoters in subcutaneous adipose tissue. Nutr Diabetes. 2015;5:e168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gagne-Ouellet V, Houde AA, Guay SP, Perron P, Gaudet D, Guerin R, et al. Placental lipoprotein lipase DNA methylation alterations are associated with gestational diabetes and body composition at 5 years of age. Epigenetics. 2017;12:616–25.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Weraarpachai W, Antonicka H, Sasarman F, Seeger J, Schrank B, Kolesar JE, et al. Mutation in TACO1, encoding a translational activator of COX I, results in cytochrome c oxidase deficiency and late-onset Leigh syndrome. Nat Genet. 2009;41:833–7.

    Article  CAS  PubMed  Google Scholar 

  90. Kuraoka I, Ito S, Wada T, Hayashida M, Lee L, Saijo M, et al. Isolation of XAB2 complex involved in pre-mRNA splicing, transcription, and transcription-coupled repair. J Biol Chem. 2008;283:940–50.

    Article  CAS  PubMed  Google Scholar 

  91. Zhou C, He X, Zeng Q, Zhang P, Wang CT. CCDC7 activates interleukin-6 and vascular endothelial growth factor to promote proliferation via the JAK-STAT3 pathway in cervical cancer cells. Onco Targets Ther. 2020;13:6229–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Xu R, Li S, Guo S, Zhao Q, Abramson MJ, Li S, et al. Environmental temperature and human epigenetic modifications: a systematic review. Environ Pollut. 2020;259:113840.

    Article  CAS  PubMed  Google Scholar 

  93. Kunitomi H, Kobayashi Y, Wu RC, Takeda T, Tominaga E, Banno K, et al. LAMC1 is a prognostic factor and a potential therapeutic target in endometrial cancer. J Gynecol Oncol. 2020;31:e11.

    Article  PubMed  CAS  Google Scholar 

  94. Yusenko MV, Nagy A, Kovacs G. Molecular analysis of germline t(3;6) and t(3;12) associated with conventional renal cell carcinomas indicates their rate-limiting role and supports the three-hit model of carcinogenesis. Cancer Genet Cytogenet. 2010;201:15–23.

    Article  CAS  PubMed  Google Scholar 

  95. Kozlov SV, Waardenberg AJ, Engholm-Keller K, Arthur JW, Graham ME, Lavin M. Reactive oxygen species (ROS)-activated ATM-dependent phosphorylation of cytoplasmic substrates identified by large-sale phosphoproteomics screen. Mol Cell Proteomics. 2016;15:1032–47.

    Article  CAS  PubMed  Google Scholar 

  96. Chen PS, Hsu HP, Phan NN, Yen MC, Chen FW, Liu YW, et al. CCDC167 as a potential therapeutic target and regulator of cell cycle-related networks in breast cancer. Aging (Albany NY). 2021;13:4157–81.

    Article  CAS  Google Scholar 

  97. Wang VG, Kim H, Chuang JH. Whole-exome sequencing capture kit biases yield false negative mutation calls in TCGA cohorts. PLoS One. 2018;13:e0204912.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Wangsa D, Braun R, Stuelten CH, Brown M, Bauer KM, Emons G, et al. Induced chromosomal aneuploidy results in global and consistent deregulation of the transcriptome of cancer cells. Neoplasia. 2019;21:721–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ju Q, Zhao YJ, Ma S, Li XM, Zhang H, Zhang SQ, et al. Genome-wide analysis of prognostic-related lncRNAs, miRNAs and mRNAs forming a competing endogenous RNA network in lung squamous cell carcinoma. J Cancer Res Clin Oncol. 2020;146:1711–23.

    Article  CAS  PubMed  Google Scholar 

  100. Gylfe AE, Katainen R, Kondelin J, Tanskanen T, Cajuso T, Hanninen U, et al. Eleven candidate susceptibility genes for common familial colorectal cancer. PLoS Genet. 2013;9:e1003876.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Rana J, Gulati S, Rajasekharan S, Gupta A, Chaudhary V, Gupta S. Identification of potential molecular associations between chikungunya virus non-structural protein 2 and human host proteins. Acta Virol. 2017;61:39–47.

    Article  CAS  PubMed  Google Scholar 

  102. Thimon V, Koukoui O, Calvo E, Sullivan R. Region-specific gene expression profiling along the human epididymis. Mol Hum Reprod. 2007;13:691–704.

    Article  CAS  PubMed  Google Scholar 

  103. Sipila P, Bjorkgren I. Segment-specific regulation of epididymal gene expression. Reproduction. 2016;152:R91–9.

    Article  CAS  PubMed  Google Scholar 

  104. Zhu Z, Li C, Yang S, Tian R, Wang J, Yuan Q, et al. Dynamics of the transcriptome during human spermatogenesis: predicting the potential key genes regulating male gametes generation. Sci Rep. 2016;6:19069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Meroni SB, Galardo MN, Rindone G, Gorga A, Riera MF, Cigorraga SB. Molecular mechanisms and signaling pathways involved in Sertoli cell proliferation. Front Endocrinol (Lausanne). 2019;10:224.

    Article  Google Scholar 

  106. Yamamoto S, Yamazaki T, Komazaki S, Yamashita T, Osaki M, Matsubayashi M, et al. Contribution of calumin to embryogenesis through participation in the endoplasmic reticulum-associated degradation activity. Dev Biol. 2014;393:33–43.

    Article  CAS  PubMed  Google Scholar 

  107. Zhang M, Yamazaki T, Yazawa M, Treves S, Nishi M, Murai M, et al. Calumin, a novel Ca2+-binding transmembrane protein on the endoplasmic reticulum. Cell Calcium. 2007;42:83–90.

    Article  PubMed  CAS  Google Scholar 

  108. Yu B, Zhang T, Xia P, Gong X, Qiu X, Huang J. CCDC134 serves a crucial role in embryonic development. Int J Mol Med. 2018;41:381–90.

    CAS  PubMed  Google Scholar 

  109. Huang J, Shi T, Ma T, Zhang Y, Ma X, Lu Y, et al. CCDC134, a novel secretory protein, inhibits activation of ERK and JNK, but not p38 MAPK. Cell Mol Life Sci. 2008;65:338–49.

    Article  CAS  PubMed  Google Scholar 

  110. Ferragud J, Avivar-Valderas A, Pla A, De Las RJ, Font de Mora J. Transcriptional repression of the tumor suppressor DRO1 by AIB1. FEBS Lett. 2011;585:3041–6.

    Article  CAS  PubMed  Google Scholar 

  111. Aoki K, Sun YJ, Aoki S, Wada K, Wada E. Cloning, expression, and mapping of a gene that is upregulated in adipose tissue of mice deficient in bombesin receptor subtype-3. Biochem Biophys Res Commun. 2002;290:1282–8.

    Article  CAS  PubMed  Google Scholar 

  112. Tremblay F, Revett T, Huard C, Zhang Y, Tobin JF, Martinez RV, et al. Bidirectional modulation of adipogenesis by the secreted protein Ccdc80/DRO1/URB. J Biol Chem. 2009;284:8136–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Liu Y, Monticone M, Tonachini L, Mastrogiacomo M, Marigo V, Cancedda R, et al. URB expression in human bone marrow stromal cells and during mouse development. Biochem Biophys Res Commun. 2004;322:497–507.

    Article  CAS  PubMed  Google Scholar 

  114. Chiang CY, Ching YH, Chang TY, Hu LS, Yong YS, Keak PY, et al. Novel eye genes systematically discovered through an integrated analysis of mouse transcriptomes and phenome. Comput Struct Biotechnol J. 2020;18:73–82.

    Article  CAS  PubMed  Google Scholar 

  115. Tsumagari K, Baribault C, Terragni J, Varley KE, Gertz J, Pradhan S, et al. Early de novo DNA methylation and prolonged demethylation in the muscle lineage. Epigenetics. 2013;8:317–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Tomita T, Ieguchi K, Coin F, Kato Y, Kikuchi H, Oshima Y, et al. ZFC3H1, a zinc finger protein, modulates IL-8 transcription by binding with celastramycin A, a potential immune suppressor. PLoS One. 2014;9:e108957.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Zhang F, Bieniasz PD. HIV-1 Vpr induces cell cycle arrest and enhances viral gene expression by depleting CCDC137. Elife. 2020;9.

  118. Thomas J, Leufflen L, Chesnais V, Diry S, Demange J, Depardieu C, et al. Identification of specific tumor markers in vulvar carcinoma through extensive human papillomavirus DNA characterization using next generation sequencing method. J Low Genit Tract Dis. 2020;24:53–60.

    Article  PubMed  Google Scholar 

  119. Gonzalez-Pena D, Nixon SE, O'Connor JC, Southey BR, Lawson MA, McCusker RH, et al. Microglia transcriptome changes in a model of depressive behavior after immune challenge. PLoS One. 2016;11:e0150858.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Hu Q, Ao Q, Tan Y, Gan X, Luo Y, Zhu J. Genome-wide DNA methylation and RNA analysis reveal potential mechanism of resistance to streptococcus agalactiae in GIFT strain of Nile tilapia (Oreochromis niloticus ). J Immunol. 2020;204:3182–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. P AA, Krishan K. Embryology, sexual development. StatPearls. Treasure Island (FL)2021.

  122. Nobeyama Y, Nakagawa H. Aberrant DNA methylation in keratoacanthoma. PLoS One. 2016;11:e0165370.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Silva IM, Rosenfeld J, Antoniuk SA, Raskin S, Sotomaior VS. A 1.5Mb terminal deletion of 12p associated with autism spectrum disorder. Gene. 2014;542:83–6.

    Article  CAS  PubMed  Google Scholar 

  124. Nashef A, Qabaja R, Salaymeh Y, Botzman M, Munz M, Dommisch H, et al. Integration of murine and human studies for mapping periodontitis susceptibility. J Dent Res. 2018;97:537–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Xiong JH, Mao C, Sha XW, Jin Z, Wang H, Liu YY, et al. Association between genetic variants in NOD2, C13orf31, and CCDC122 genes and leprosy among the Chinese Yi population. Int J Dermatol. 2016;55:65–9.

    Article  CAS  PubMed  Google Scholar 

  126. Zuo X, Sun L, Yin X, Gao J, Sheng Y, Xu J, et al. Whole-exome SNP array identifies 15 new susceptibility loci for psoriasis. Nat Commun. 2015;6:6793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Volodarsky M, Lichtig H, Leibson T, Sadaka Y, Kadir R, Perez Y, et al. CDC174, a novel component of the exon junction complex whose mutation underlies a syndrome of hypotonia and psychomotor developmental delay. Hum Mol Genet. 2015;24:6485–91.

    Article  CAS  PubMed  Google Scholar 

  128. Yi Z, Ouyang J, Sun W, Li S, Xiao X, Zhang Q. Comparative exome sequencing reveals novel candidate genes for retinitis pigmentosa. EBioMedicine. 2020;56:102792.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Romanova Y, Laikov A, Markelova M, Khadiullina R, Makseev A, Hasanova M, et al. Proteomic analysis of human serum from patients with chronic kidney disease. Biomolecules. 2020;10.

  130. Diez-Fairen M, Houle G, Ortega-Cubero S, Bandres-Ciga S, Alvarez I, Carcel M, et al. Exome-wide rare variant analysis in familial essential tremor. Parkinsonism Relat Disord. 2021;82:109–16.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the facilities extended by UGC-SAP, UGC-CAS, DBT-CREBB, DST-PURSE, UGC-UPE-II, and FIST programs at the School of Life Sciences, University of Hyderabad.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh Yenugu.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 32 kb)

ESM 2

(DOCX 72 kb)

ESM 3

(DOCX 375 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priyanka, P.P., Yenugu, S. Coiled-Coil Domain-Containing (CCDC) Proteins: Functional Roles in General and Male Reproductive Physiology. Reprod. Sci. 28, 2725–2734 (2021). https://doi.org/10.1007/s43032-021-00595-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-021-00595-2

Keywords