Skip to main content

Advertisement

Log in

Species differentiation in two closely related Neotropical rodents across a transition zone between ecoregions

  • Original Article
  • Published:
Mammalian Biology Aims and scope Submit manuscript

Abstract

Cline variation in ecoregion transition zones can provide strong evidence for adaptation to different environments. We describe the geographical gradations of phenotypes and genetic variation between two rodent species across an environmental gradient in northwestern Argentina. We applied an integrative analysis of the genetic (mtDNA) and phenotypic (skull morphometrics and pelage colorimetrics) variation in Graomys griseoflavus and G. chacoensis, at the margin of their ranges along a local transect between the Chaco and the Monte Desert ecoregions. We aimed to test the hypothesis that phenotypic clines between species corresponds with the transition between these two ecoregions. Molecular identification based on 777 bp of the mitochondrial cyt b evidenced that both species did not occur in syntopy and corroborated a marked genetic differentiation. Subtle species differences were evident in both skull morphometrics and pelage colorimetrics. Generalized additive models of phenotypic traits suggested an ecological and evolutionary interaction between species and their environment. The tympanic bullae traits showed a significant cline variation across the transition zone, both being greater in the specimens from the Monte Desert ecoregion. The phenotypic shift along the transect showed disparate patterns not always coincident with the transition between ecoregions. These patterns could arise by means of selection (or phenotypic plasticity) due to local conditions favoring different traits in populations inhabiting distinct environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ackermann RR, Cheverud JM (2004) Detecting genetic drift versus selection in human evolution. Proc Natl Acad Sci USA 101:17946–17951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alhajeri BH, Steppan SJ (2018) A phylogenetic test of adaptation to deserts and aridity in skull and dental morphology across rodents. J Mammal 99:1197–1216

    Article  Google Scholar 

  • Allen JA (1901) New South American Muridae and a new Metachirus. Bull Am Mus Nat Hist 14:405–412

    Google Scholar 

  • Anderson S, Yates TL (2000) A new genus and species of phyllotine rodent from Bolivia. J Mammal 81:18–36

    Article  Google Scholar 

  • Arnold J (1997) Natural hybridization and evolution. Oxford University Press, Oxford

    Google Scholar 

  • Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    Article  CAS  PubMed  Google Scholar 

  • Barton NH, Hewitt GM (1985) Analysis of hybrid zones. Ann Rev Ecol Syst 16:113–148

    Article  Google Scholar 

  • Bruford ME, Hanotte O, Brookfield JFY, Burke T (1992) Single-locus and multilocus DNA fingerprinting. In: Hoelzel AR (ed) Molecular genetic analysis of populations, a practical approach. Oxford University Press, Oxford, pp 225–269

    Google Scholar 

  • Burkart R, Bárbaro NO, Sánchez RO, Gómez DA (1999) Eco-Regiones de la Argentina. Administración de Parques Nacionales. Programa de desarrollo institucional, componente de política ambiental, Buenos Aires

  • Catanesi CI, Vidal-Rioja L, Crisci JV, Zambelli A (2002) Phylogenetic relationships among Robertsonian karyomorphs of Graomys griseoflavus (Rodentia, Muridae) by mitochondrial cytochrome b DNA sequencing. Hereditas 136:130–136

    Article  CAS  PubMed  Google Scholar 

  • Catanesi CI, Vidal-Rioja L, Zambelli A (2006) Molecular and phylogenetic analysis of mitochondrial control región in Robertsonian karyomorphs of Graomys griseoflavus (Rodentia, Sigmodontinae). Mastozool Neotrop 13:21–30

    Google Scholar 

  • Chavez AS, Kenagy GJ (2014) Clinal colour variation within a panmictic population of tree squirrels, Tamiasciurus douglassi (Rodentia: Sciuridae), across an ecological gradient. Biol J Linn Soc 113:536–546

    Article  Google Scholar 

  • Coyne JA, Orr HA (2004) Speciation. Sinauer Associates, Inc., Sunderland

    Google Scholar 

  • Díaz MM (1999) Los mamíferos de Jujuy: sistemática, distribución y ecología. Tesis doctoral. Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán

  • Díaz MM, Flores DA, Barquez RM (1998) Instrucciones para la preparación y conservación de mamíferos. Publicaciones especiales No. 1. PIDBA, Universidad Nacional de Tucumán, Tucumán, Argentina

  • Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2013) InfoStat. Version 2013. Córdoba: Universidad Nacional de Córdoba, Facultad de Ciencias Agropecuarias

  • Drummond AJ, Rambaut A (2007) Beast: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:e214

    Article  Google Scholar 

  • Drummond AJ, Rambaut A, Shapiro B, Pybus OG (2005) Bayesian coalescent inference of past population dynamics from molecular sequences. Mol Biol Evol 22:1185–1192

    Article  CAS  PubMed  Google Scholar 

  • Edgard RC (2004) Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  Google Scholar 

  • Endler JA (1977) Geographic variation, speciation and clines. Princeton University Press, Princeton

    Google Scholar 

  • Endler JA (1995) Multiple-trait coevolution and environmental gradients in guppies. Trends Ecol Evol 10:22–29

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  • Ferro LI, Martínez JJ (2009) Molecular and morphometric evidences validate a Chacoan species of the grey leaf-eared mice genus Graomys (Rodentia: Cricetidae: Sigmodontinae). Mammalia 73:265–271

    Article  Google Scholar 

  • Fu Y-X (1997) Statistical test of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gifford ME (2008) Divergent character clines across a recent secondary contact zone in a Hispaniolan lizard. J Zool 274:292–300

    Article  Google Scholar 

  • Hammer Ø, Harper DA, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electron 4:e1

    Google Scholar 

  • Koenig MM (2015) Morphological response in sister taxa of woodrats (genus: Neotoma) across a zone of secondary contact. PhD dissertation. Faculty of California Polytechnic State University, San Luis Obispo

  • Lanzone C, Suárez SN, Rodriguez D, Ojeda A, Albanese S, Ojeda RA (2014) Chromosomal variability and morphological notes in Graomys griseoflavus (Rodentia, Cricetidae, Sigmodontinae), from Catamarca and Mendoza provinces, Argentina. Mastozool Neotrop 21:47–58

    Google Scholar 

  • Le Gros A, Samadi S, Zuccon D, Cornette R, Braun MP, Senar JC et al (2016) Rapid morphological changes, admixture and invasive success in populations of Ring-necked parakeets (Psittacula krameri) established in Europe. Biol Invasions 18:1581–1598

    Article  Google Scholar 

  • Ledevin R, Millien V (2013) Congruent morphological and genetic differentiation as a signature of range expansion in a fragmented landscape. Ecol Evol 3:4172–4182

    Article  PubMed  PubMed Central  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Martínez JJ, Di Cola V (2011) Geographic distribution and phenetic skull variation in two close species of Graomys (Rodentia, Cricetidae, Sigmodontinae). Zool Anz 250:175–194

    Article  Google Scholar 

  • Martínez JJ, Gardenal CN (2016) Phylogenetic relationships among species of the Neotropical genus Graomys (Rodentia: Cricetidae): contrasting patterns of skull morphometric variation and genetic divergence. Biol J Linn Soc 118:648–667

    Article  Google Scholar 

  • Martínez JJ, González-Ittig RE, Theiler GR, Ojeda R, Lanzone C, Ojeda A, Gardenal CN (2010) Patterns of speciation in two sibling species of Graomys (Rodentia, Cricetidae) based on mtDNA sequences. J Zool Syst Evol Res 48:159–166

    Article  Google Scholar 

  • Matocq MD, Murphy PJ (2007) Fine-scale phenotypic change across a species transition zone in the genus Neotoma: disentangling independent evolution from phylogenetic history. Evolution 61:2544–2557

    Article  PubMed  Google Scholar 

  • Minetti J (1999) Atlas climático del Noroeste Argentino. Fundación Zon Caldenius, Tucuman, Argentina

  • Moore WS, Price JT (1993) Nature selection in the northern flicker hybrid zone and its implications for speciation theory. In: Harrison RG (ed) Hybrid zones and the evolutionary process. Oxford University Press, pp 196–225

    Google Scholar 

  • Mullen LM, Hoekstra HE (2008) Natural selection along an environmental gradient: a classic cline in mouse pigmentation. Evolution 62:1555–1570

    Article  CAS  PubMed  Google Scholar 

  • Myers P, Patton JL (1989) A new species of Akodon from the cloud forests of eastern Cochabamba Department, Bolivia (Rodentia: Sigmodontinae). Occas Pap Mus Zool Univ Mich 720:1–28

    Google Scholar 

  • Ojeda RA, Tabeni S (2009) The mammals of the monte desert revisited. J Arid Environ 73:173–181

    Article  Google Scholar 

  • Paradis E, Kamvar ZN, Jombart T, Brian K, Frederic M (2020) Pegas: population and evolutionary genetics analysis system

  • R Development Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rambaut A, Drummond AJ (2003) Tracer. beast.bio.ed.ac.uk/tracer

  • Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569

    CAS  PubMed  Google Scholar 

  • Sandoval Salinas ML, Sandoval JD, Colombo EM (2016) Objective measurement of Akodon budini dorsal coloration: methodological concerns. Anais Acad Brasil Ci 88(1 Suppl.):489–502

    Article  Google Scholar 

  • Sandoval Salinas ML, Barquez RM, Colombo EM, Sandoval JD (2017) Intra-specific pelage color variation in a South American small rodent species. Braz J Biol 77:1–11

    Article  CAS  PubMed  Google Scholar 

  • Schanda JD (1997) Colorimetry, Chapter 9. In: Decusatis C (ed) Handbook of applied photometry. AIP Press, Woodbury, pp 327–412

    Google Scholar 

  • Schanda J (2007) Colorimetry. Understanding the CIE system. Wiley, Hoboken

    Book  Google Scholar 

  • Souto-Lima RB, Millien V (2014) The influence of environmental factors on the morphology of red-backed voles Myodes gapperi (Rodentia, Arvicolinae) in Québec and western Labrador. Biol J Linn Soc 112:204–2018

    Article  Google Scholar 

  • Spurgin LG, Illera JC, Jorgensen TH, Dawson DA, Richardson DS (2014) Genetic and phenotypic divergence in an island bird: isolation by distance, by colonization or by adaptation? Mol Ecol 23:1028–1039

    Article  PubMed  Google Scholar 

  • Tajima F (1989) The effect of change in population size on DNA polymorphism. Genetics 123:597–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theiler GR, Blanco A (1996a) Patterns of evolution in Graomys griseoflavus (Rodentia, Muridae): III. Olfactory discrimination as a premating isolation mechanism between cytotypes. J Exp Zool 274:346–350

    Article  Google Scholar 

  • Theiler GR, Blanco A (1996b) Patterns of evolution in Graomys griseoflavus (Rodentia, Muridae): II. Reproductive Isolation between Cytotypes. J Mammal 77:776–784

    Article  Google Scholar 

  • Theiler GR, Gardenal CN, Blanco A (1999a) Patterns of evolution in Graomys griseoflavus (Rodentia, Muridae). IV. A case of rapid speciation. J Evol Biol 12:970–979

    Article  Google Scholar 

  • Theiler GR, Ponce RH, Fretes RE, Blanco A (1999b) Reproductive barriers between the 2n = 42 and 2n = 36–38 cytotype of Graomys (Rodentia, Muridae). Mastozool Neotrop 6:129–133

    Google Scholar 

  • Wainberg RL, Fronza TG (1974) Autosomic polymorphism in Phyllotis griseoflavus griseoflavus Waterhouse, 1837 (Rodentia, Cricetidae). Boll Zool 41:19–24

    Article  Google Scholar 

  • Waterhouse GR (1837) Characters of new species of Mus, from the collection of Mr. Darwin. Proc Zool Soc Lond 1837:28–29

    Google Scholar 

  • Webster DB (1966) Ear structure and function in modern mammals. Am Zool 6:451–466

    Article  CAS  PubMed  Google Scholar 

  • Webster DB, Webster M (1980) Morphological adaptations of the ear in the rodent family Heteromyidae. Am Zool 20:247–254

    Article  Google Scholar 

  • Wood S (2006) Generalized additive models: an introduction with R. Chapman and Hall/CRC, Boca Raton

    Book  Google Scholar 

  • Wood S (2008) Fast stable direct fitting and smoothness selection for generalized additive models. J R Stat Soc Ser B Stat Methodol 70:495–518

    Article  Google Scholar 

  • Yazdi FT, Colangelo P, Adriaens D (2015) Testing a long-standing hypothesis on the relation between the auditory bulla size and environmental conditions: a case study in two jird species (Muridae: Meriones libycus and M. crassus). Mammalia 76:185–200

    Google Scholar 

  • Zambelli A, Vidal-Rioja L, Wainberg R (1994) Cytogenetic analysis of autosomal polymorphism in Graomys griseoflavus (Rodentia, Cricetidae). Z Säugetierkd 59:14–20

    Google Scholar 

Download references

Acknowledgements

We are grateful to Cecilia Miozzo and her team for laboratory support and help at different moments of this study. R. Tatiana Sánchez and Cecilia G. García hold postdoc fellowships granted by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). We are grateful to two anonymous reviewers, whose comments and corrections improved the manuscript. JJM, MLSS, RMB, and IF are CONICET Researchers. This study was partially funded by CONICET (PIP 668 2015-2017) to JJM and IF.

Funding

Financial support was provided by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, PIP 668 2015–2017).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization (JJM); Methodology (JJM, RTS, MLSS, CGG, IF); Formal analysis and investigation (JJM, RTS, MLSS); Writing—original draft preparation (JJM); Writing—review and editing (JJM, RTS, MLSS, CGG, RMB, IF).

Corresponding author

Correspondence to Juan José Martínez.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling editor: Allan McDevitt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 335 KB)

Appendix A

Appendix A

List of examined specimens of Graomys species, their geographical origin and their accession or catalog number. CML is the acronym of the Colección Mamíferos Lillo, Universidad Nacional de Tucumán, Tucumán. GenBank access between brackets.


Graomys chacoensis. CATAMARCA province, Capayán department, Chumbicha, − 27.5333, − 66.4000 (CML 3477, CML 3481, CML 3483, CML 3484, CML 9432). LA RIOJA province, General Ocampo department, Ambil, 23 km S of Catuna, − 31.1268, − 66.3459 (CML 12978, CML 12979 [OL840971], CML 12980 [OL840961], CML 12981 [OL840944], CML 12982 [OL840959], CML 12983 [OL840962], CML 12984 [OL840954], CML 13006 [OL840945]). Rosario V. Peñaloza department, Chepes, Puesto La Escondida, 42 km S of Chepes, − 31.5764, − 66.2486 (CML 12990 [OL840947]). General Angel V. Peñaloza department, Chila, 8 km N of Tama, − 31.4609, − 66.5344 (CML 12985 [OL840964], CML 12986 [OL840956]). Tama, 6.5 km S of the main square by route 30, − 30.5535, − 66.5167 (CML 12987 [OL840949]). Independencia department, Guayapa, Patquia, − 30.0654, − 66.8873 (CML 1514, CML 1517, CML 1519, CML 1521, CML 1522, CML 1525, CML 1569). General Facundo Quiroga department. 2 km E of Malazán, El Descanso camping, − 30.8105, − 66.5778 (CML 12964 [OL840970], CML 12965 [OL840951], CML 13005 [OL840958]). General Belgrano department, Olta, Olta dam, − 30.6396, − 66.2963 (CML 12961 [OL840955], CML 12962 [OL840957], CML 12963 [OL840966]). San Martín department, Ulapes, 1 km W of the main square of Ulapes, − 31.5764, − 66.2486 (CML 12991 [OL840972], CML 12992 [OL840974], CML 12993 [OL840950], CML 12994 [OL840946], CML 12995 [OL840952], CML 12996 [OL840948], CML 12997 [OL840960], CML 12998 [OL840967], CML 12999 [OL840963], CML 13000 [OL840969], CML 13007 [OL840953], CML 13008 [OL840968], CML 13009 [OL840965], CML 13010 [OL840973]).


Graomys griseoflavus. CATAMARCA province, Tinogasta department, near La Puntilla, 300 mW of RN 60, 1.23 km SE of Río Colorado, − 28.1035, − 67.5163 (CML 13003 [OL840922]). LA RIOJA province, Castro Barros department, Anillaco, − 28.8139, − 66.9368 (CML 9748, CML 9749, CML 12954, CML 12955 [OL840920], CML 12956 [OL840942], CML 12953 [OL840921], CML 12958 [OL840918]). Independencia department, El Chiflón, near to Reserva Provincial El Chiflón, − 30.2093, − 67.5583 (CML 12988 [OL840940], CML 12989 [OL840924]). Felipe Varela department. 3 km NW of Guandacol, road to Santa Elena, − 29.4978, − 68.5811 (CML 9757, 9758). Chilecito department, Paraje Guanchin, by RP 15 km 19, − 29.1824, − 67.6425 (CML 12959 [OL840930]). Arauco department, Quebrada de Mazán, 1.09 km W of Villa Mazán roundabout, − 28.6440, − 66.5588 (CML 12949 [OL840915], CML 12950 [OL840929], CML 13004 [OL840926], CML 12951 [OL840927], CML 12952 [OL840935]). 2 km S, crossing Río de La Punta, RP 7, − 28.7580, − 66.7859 (CML 12944 [OL840931], CML 12945 [OL840933], CML 12946 [OL840932], CML 12947 [OL840934], CML 12948 [OL840923]). Sanagasta department. Near to Parque Geológico Sanagasta, by RN 75, − 29.2802, − 67.0366 (CML 13001 [OL840941], CML 13002 [OL840919]). Vinchina department. 12.4 km of San José de Vinchina, − 28.7171, − 68.2927 (CML 9401, CML 9416, CML 9417, CML 9418, CML 9423). General Lamadrid department, Villa Castelli, Cerro del Toro, − 28.9999, − 68.1764 (CML 12966 [OL840916], CML 12972, CML 12974 [OL840917], CML 12967 [OL840936], CML 12968 [OL840939], CML 12969 [OL840925], CML 12970 [OL840938], CML 12973 [OL840943], CML 12975 [OL840928], CML 12976 [OL840937]).

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez, J.J., Sánchez, R.T., Sandoval Salinas, M.L. et al. Species differentiation in two closely related Neotropical rodents across a transition zone between ecoregions. Mamm Biol 102, 1927–1941 (2022). https://doi.org/10.1007/s42991-022-00306-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42991-022-00306-7

Keywords

Navigation